生物炭由于其稳定的化学性质及对陆地生态系统土壤碳平衡的潜在用途被广泛关注。森林火灾的发生导致大量的生物炭向森林土壤输入。但生物炭输入对森林土壤有机碳(SOC)激发效应的影响及氮有效性如何调控这一过程尚不明确。本研究通过向...生物炭由于其稳定的化学性质及对陆地生态系统土壤碳平衡的潜在用途被广泛关注。森林火灾的发生导致大量的生物炭向森林土壤输入。但生物炭输入对森林土壤有机碳(SOC)激发效应的影响及氮有效性如何调控这一过程尚不明确。本研究通过向亚热带常绿阔叶林土壤中同时添加生物炭(相当于添加SOC含量的5%)和氮(相当于添加土壤全氮含量的0、5%、10%的硝酸铵),探讨生物炭引起的激发效应对氮添加的响应。结果表明:氮添加对生物炭分解没有影响,0、5%、10%氮处理的生物炭分解量分别为添加量的1.0%、1.0%、1.1%;激发释放的CO2量分别为9.0±2.1、8.3±2.4、5.9±0.8 g C·kg^-1 SOC。生物炭显著加速SOC分解,造成强烈的正激发效应(47.2%)。氮添加在整个培养期间对SOC分解没有显著影响,但在不同培养阶段其效应有所不同,前期激发效应强度由40.3%增长至63.1%,而后期使激发效应强度由51.1%下降至17.4%。不论有无氮添加,生物炭输入造成土壤净碳增加。研究表明,生物炭在亚热带森林土壤碳固持中扮演重要角色,并可能缓解未来气候变暖。展开更多
Four kinds of plant materials (astragalus, azolla, rice straw and water hyacinth) were allowed to decompose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged c...Four kinds of plant materials (astragalus, azolla, rice straw and water hyacinth) were allowed to decompose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged conditions. Greater amounts of C and N from azolla were retained in soils throughout the 10-year experimental period compared to those from the other plant materials. The residual C Of all the plant materials in the two soils under upland conditions mineralized st rates corresponding to half-lives between 4.4-6.6 years,while the corresponding figures for thine under submerged conditions were between 6.5-13.1 years. Minerallization of residual organic N followed the same pattern as residual C. Compared to residual C, however, the mineralization rates of residual organic N in most cases were significantly lower and the percentages of added N regained in sons were higher. More N from plat materials was retained in the yellow-brown soil than in the red soil, but no consistent differences in the amounts of C from plant materials and in the mineralization rates of both residual C and residual organic N between the two soils could be found.展开更多
文摘生物炭由于其稳定的化学性质及对陆地生态系统土壤碳平衡的潜在用途被广泛关注。森林火灾的发生导致大量的生物炭向森林土壤输入。但生物炭输入对森林土壤有机碳(SOC)激发效应的影响及氮有效性如何调控这一过程尚不明确。本研究通过向亚热带常绿阔叶林土壤中同时添加生物炭(相当于添加SOC含量的5%)和氮(相当于添加土壤全氮含量的0、5%、10%的硝酸铵),探讨生物炭引起的激发效应对氮添加的响应。结果表明:氮添加对生物炭分解没有影响,0、5%、10%氮处理的生物炭分解量分别为添加量的1.0%、1.0%、1.1%;激发释放的CO2量分别为9.0±2.1、8.3±2.4、5.9±0.8 g C·kg^-1 SOC。生物炭显著加速SOC分解,造成强烈的正激发效应(47.2%)。氮添加在整个培养期间对SOC分解没有显著影响,但在不同培养阶段其效应有所不同,前期激发效应强度由40.3%增长至63.1%,而后期使激发效应强度由51.1%下降至17.4%。不论有无氮添加,生物炭输入造成土壤净碳增加。研究表明,生物炭在亚热带森林土壤碳固持中扮演重要角色,并可能缓解未来气候变暖。
文摘Four kinds of plant materials (astragalus, azolla, rice straw and water hyacinth) were allowed to decompose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged conditions. Greater amounts of C and N from azolla were retained in soils throughout the 10-year experimental period compared to those from the other plant materials. The residual C Of all the plant materials in the two soils under upland conditions mineralized st rates corresponding to half-lives between 4.4-6.6 years,while the corresponding figures for thine under submerged conditions were between 6.5-13.1 years. Minerallization of residual organic N followed the same pattern as residual C. Compared to residual C, however, the mineralization rates of residual organic N in most cases were significantly lower and the percentages of added N regained in sons were higher. More N from plat materials was retained in the yellow-brown soil than in the red soil, but no consistent differences in the amounts of C from plant materials and in the mineralization rates of both residual C and residual organic N between the two soils could be found.