【目的】土壤侵蚀引起的土壤有机碳动态变化对可持续土地利用与管理以及陆地碳收支具有重要意义,为了解该领域的前沿及发展方向,采用文献计量学方法探究近30年来土壤侵蚀与土壤有机碳动态研究进展及热点。【方法】本文基于Web of Scienc...【目的】土壤侵蚀引起的土壤有机碳动态变化对可持续土地利用与管理以及陆地碳收支具有重要意义,为了解该领域的前沿及发展方向,采用文献计量学方法探究近30年来土壤侵蚀与土壤有机碳动态研究进展及热点。【方法】本文基于Web of Science核心数据库和中国知网(CNKI)中文核心期刊数据库,采用CiteSpace软件和文献计量学方法,分析了国内外近30年土壤侵蚀与土壤有机碳动态研究的发展历程、研究热点和趋势。【结果】研究表明欧美国家在该领域的研究发展较早,尤其是美国无论是国际影响力还是国际合作紧密性均处于领先地位,我国虽起步较晚但处于稳步快速发展态势;国际上该领域的研究在1995~2004年间主要围绕耕作方式和农艺措施对土壤侵蚀与土壤有机碳动态的影响,进而发展为侵蚀条件下土壤微生物及其群落对土壤有机碳的影响;近十年逐渐向基于稳定性同位素技术的土壤侵蚀与土壤有机碳动态定量研究转变,同时土壤侵蚀导致的碳氮流失所造成的面源污染及侵蚀碳在全球碳循环中的作用也是近年来的研究热点。国内于1995~2004年在本领域的研究主要集中土壤侵蚀所造成的有机碳和养分流失的研究,而后逐渐发展为结合“3S”技术和土壤侵蚀模型,研究人类活动、土地利用及气候变化等因素对土壤侵蚀与土壤有机碳动态的影响。近五年结合核素示踪、光谱等技术,在国家政策引导下该领域逐步发展为从生态综合治理向生态文明建设为核心的问题导向研究。【结论】通过分析对比国内外土壤侵蚀与土壤有机碳动态研究的热点和前沿,提出我国在该领域今后研究的展望。展开更多
Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 w...Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 was 12.4mg/(m2·h) and the emission range of CO2 was 8.7-16.6g/(m2·d) (gross CO2 flux) during plant growth period. CO2 emission rate in the day was stronger than that at night, and the daily peak appears at 19:00. The mire plants in the Sanjiang Plain begin to sprout at the end of April. The aboveground biomass of the mire plants increased from zero to the peak from July to September and showed single peak form. The aboveground biomass of Carex lasiocarpa (464.8g/m2) was lower than that of Deyeuxia platyphylla (530.8g/m2), but the underground biomass was higher than that of Deyeuxia platyphylla. Gross CO2 flux showed the significance positive correlation relationship with plant biomass. Gross CO2 flux and CH4 emission were also correlated with soil temperature (0-5cm) and water temperature. However, the highest CH4 emission rate lagged behind the highest soil temperature in the root area during plant growth period. The data also indicated that wet and warm conditions during the early spring led to greater value of CH4 emission flux. Inundation is the necessary condition for the existence of methane bacteria, but there is no significant positive correlation between the inundation depth and CH4 emission rate in this region. Within the same growing season and under the same inundation condition, the variations of CH4 emission rate could be markedly different.展开更多
Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the ...Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the isotopic mass balance equation,relative contributions of new versus old SOC,and SOC turnover rate in corn fields were evaluated world-wide.However,most previous research had not analyzed corn debris left in the field,instead using an average corn plant δ^(13)C value or a measured value to calculate the proportion of corn-derived SOC,either of which could bias results.This paper carried out a detailed analysis of isotopic fractionation in corn plants and deduced the maximum possible bias of SOC dynamics study.The results show approximately 3‰ isotopic fractionation from top to bottom of the corn leaf.The ^(13)C enrichment sequence in corn plant was tassel﹥stalk or cob﹥root﹥leaves.Individual parts accounting for the total dry mass of corn returned distinct values.Consequently,the average δ^(13)C value of corn does not represent the actual isotopic composition of corn debris.Furthermore,we deduced that the greater the fractionation in corn plant,the greater the possible bias.To alleviate bias of SOC dynamics study,we suggest two measures:analyze isotopic compositions and proportions of each part of the corn and determine which parts of the corn plant are left in the field and incorporated into SOC.展开更多
Intensity of tillage practices can enhance organic matter decomposition, increasing CO2 emissions from soil to the atmosphere. Conservation tillage (CT) has been proposed as a means of counteracting potential damage...Intensity of tillage practices can enhance organic matter decomposition, increasing CO2 emissions from soil to the atmosphere. Conservation tillage (CT) has been proposed as a means of counteracting potential damages to the environment. In this study the effects of two CT systems, reduced tillage in a long-term experiment (RTL) and no-tillage in a short-term experiment (NTs), were compared to traditional tillage (TT) in the long (TTL) and short-term experiments (TTs). CO2 fluxes, total soil organic carbon (SOC) and dehydrogenase activity (DHA) were evaluated at 0-5, 5-10 and 10-15 cm depths throughout the three years studied (Oct. 2006 Jul. 2009). Traditional tillage increased C02 emissions compared to CT. The CT treatments (RTL and NTs) accumulated more SOC in the surface layer (0 5 cm) than the TT treatments (TTL and TTs). SOC accumulation was moderate but DHA consistently increased in CT in the surface soil, especially with a legume crop included in the crop rotation. Values of stratification ratio of all parameters studied were higher in the CT treatments (RTL and NTs). The agricultural and environmental benefits derived from CT make this system recommendable for semi-arid Mediterranean rain-fed agriculture.展开更多
Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible rol...Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible role in carbon sequestration, soil microbes are very important organisms in relation to global climate changes. This review focuses mainly on the responses of soil microbes to climate changes and subsequent effects on soil carbon dynamics. An overview table regarding extracellular enzyme activities(EAA) with all relevant literature data summarizes the effects of different ecosystems under various experimental treatments on EAA. Increasing temperature, altered soil moisture regimes, and elevated carbon dioxide significantly affect directly or indirectly soil microbial activities.High temperature regimes can increase the microbial activities which can provide positive feedback to climate change, whereas lower moisture condition in pedosystem can negate the increase, although the interactive effects still remain unanswered. Shifts in soil microbial community in response to climate change have been determined by gene probing, phospholipid fatty acid analysis(PLFA),terminal restriction length polymorphism(TRFLP), and denaturing gradient gel electrophoresis(DGGE), but in a recent investigations,omic technological interventions have enabled determination of the shift in soil microbe community at a taxa level, which can provide very important inputs for modeling C sequestration process. The intricacy and diversity of the soil microbial population and how it responds to climate change are big challenges, but new molecular and stable isotope probing tools are being developed for linking fluctuations in microbial diversity to ecosystem function.展开更多
Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecologic...Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecological experimental station (28° 04'-28° 37' N, 116° 41'-117° 09' E) in Yujiang County, Jiangxi Province, China, we analyzed the dynamic relationship between soil aggregate stability and BASOC content over time in the red soil (Udic Ferrosols) fertilized with a nitrogen-phosphorus-potassium chemical fertilizer (NPK) without manure or with NPK plus livestock manure or green manure. The dynamics of BASOC was evaluated using CO2 efflux, and soil aggregates were separated according to size using a wet-sieving technique. The soils fertilized with NPK plus livestock manure had a significantly higher content of BASOC and an improved aggregate stability compared to the soils fertilized with NPK plus green manure or NPK alone. The BASOC contents in all fertilized soils decreased over time. The contents of large aggregates (800-2 000 μm) dramatically decreased over the first 7 d of incubation, but the contents of small aggregates (〈 800 μm) either remained the same or increased, depending on the incubation time and specific aggregate sizes. The aggregate stability did not differ significantly at the beginning and end of incubation, but the lowest stability in all fertilized soils occurred in the middle of the incubation, which implied that the soils had a strong resilience for aggregate stability. The change in BASOC content was only correlated with aggregate stability during the first 27 d of incubation.展开更多
Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more...Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results.展开更多
Based on the Terrestrial Ecosystem Model(TEM 5.0), together with the data of climate(temperature, precipitation and solar radiation) and environment(grassland vegetation types, soil texture, altitude, longitude and la...Based on the Terrestrial Ecosystem Model(TEM 5.0), together with the data of climate(temperature, precipitation and solar radiation) and environment(grassland vegetation types, soil texture, altitude, longitude and latitude, and atmospheric CO2 concentration data), the spatiotemporal variations of carbon storage and density, and their controlling factors were discussed in this paper. The results indicated that:(1) the total carbon storage of China's grasslands with a total area of 394.93×104 km2 was 59.47 Pg C. Among them, there were 3.15 Pg C in vegetation and 56.32 Pg C in soil carbon. China's grasslands covering 7.0–11.3% of the total world's grassland area had 1.3–11.3% of the vegetation carbon and 9.7–22.5% of the soil carbon in the world grasslands. The total carbon storage increased from 59.13 to 60.16 Pg C during 1961–2013 with an increasing rate of 19.4 Tg C yr^(-1).(2) The grasslands in the Qinghai-Tibetan Plateau contributed most to the total carbon storage during 1961–2013, accounting for 63.2% of the total grassland carbon storage, followed by Xinjiang grasslands(15.8%) and Inner Mongolia grasslands(11.1%).(3) The vegetation carbon storage showed an increasing trend, with the average annual growth rate of 9.62 Tg C yr^(-1) during 1961–2013, and temperature was the main determinant factor, explaining approximately 85% of its variation. The vegetation carbon storage showed an increasing trend in most grassland regions, however, a decreasing trend in the central grassland in the southern China, the western and central parts of the Inner Mongolian grasslands as well as some parts on the Qinghai-Tibetan Plateau. The soil carbon storage showed a significantly increasing trend with a rate of 7.96 Tg C yr^(-1), which resulted from the interaction of more precipitation and low temperature in the 1980 s and 1990 s. Among them, precipitation was the main determinant factor of increasing soil carbon increases of China's grasslands.展开更多
The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annu...The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem. The experiment included application of herbicide (butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer, wheat straw, Sesbania aculeata, and farm yard manure (FYM). Soil microbial biomass showed distinct temporal variations in both crop cycles, decreased from vegetative to grain-forming stage, and then increased to maximum at crop maturity stage. Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide + FYM, herbicide + wheat straw, herbicide + chemical fertilizer, and herbicide alone treatments in decreasing order during the rice-growing period. During wheat-growing period and summer fallow, soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM, herbicide + Sesbania, and herbicide + chemical fertilizer treatments showed similar levels. The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide + chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period. In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide, soil microbial biomass responded differentially to the treatments. The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass, which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.展开更多
Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how d...Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m^(-1) was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-^(14)C kg^(-1) soil and 200 mg NH_4^+-N kg^(-1)soil,and then incubated for 28 d.The CO_2 emissions,soil microbial biomass,and soil ammonium(NE_4^+),nitrite(NO_2^-) and nitrate(NO_3^-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m^(_1) after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added ^(14)C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg^(-1) soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg^(-1) soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH_4^+-amended soil.Ammonium immobilization and NO_2^- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO_3^- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C.展开更多
The goal of this paper is to study the mathematical properties of a new model of soil carbon dynamics which is a reaction-diffusion system with a chemotactic term, with the aim to account for the formation of soil agg...The goal of this paper is to study the mathematical properties of a new model of soil carbon dynamics which is a reaction-diffusion system with a chemotactic term, with the aim to account for the formation of soil aggregations in the bacterial and microorganism spatial organization(hot spot in soil). This is a spatial and chemotactic version of MOMOS(Modelling Organic changes by Micro-Organisms of Soil), a model recently introduced by M. Pansu and his group. The authors present here two forms of chemotactic terms, first a"classical" one and second a function which prevents the overcrowding of microorganisms.They prove in each case the existence of a nonnegative global solution, and investigate its uniqueness and the existence of a global attractor for all the solutions.展开更多
文摘【目的】土壤侵蚀引起的土壤有机碳动态变化对可持续土地利用与管理以及陆地碳收支具有重要意义,为了解该领域的前沿及发展方向,采用文献计量学方法探究近30年来土壤侵蚀与土壤有机碳动态研究进展及热点。【方法】本文基于Web of Science核心数据库和中国知网(CNKI)中文核心期刊数据库,采用CiteSpace软件和文献计量学方法,分析了国内外近30年土壤侵蚀与土壤有机碳动态研究的发展历程、研究热点和趋势。【结果】研究表明欧美国家在该领域的研究发展较早,尤其是美国无论是国际影响力还是国际合作紧密性均处于领先地位,我国虽起步较晚但处于稳步快速发展态势;国际上该领域的研究在1995~2004年间主要围绕耕作方式和农艺措施对土壤侵蚀与土壤有机碳动态的影响,进而发展为侵蚀条件下土壤微生物及其群落对土壤有机碳的影响;近十年逐渐向基于稳定性同位素技术的土壤侵蚀与土壤有机碳动态定量研究转变,同时土壤侵蚀导致的碳氮流失所造成的面源污染及侵蚀碳在全球碳循环中的作用也是近年来的研究热点。国内于1995~2004年在本领域的研究主要集中土壤侵蚀所造成的有机碳和养分流失的研究,而后逐渐发展为结合“3S”技术和土壤侵蚀模型,研究人类活动、土地利用及气候变化等因素对土壤侵蚀与土壤有机碳动态的影响。近五年结合核素示踪、光谱等技术,在国家政策引导下该领域逐步发展为从生态综合治理向生态文明建设为核心的问题导向研究。【结论】通过分析对比国内外土壤侵蚀与土壤有机碳动态研究的热点和前沿,提出我国在该领域今后研究的展望。
文摘Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 was 12.4mg/(m2·h) and the emission range of CO2 was 8.7-16.6g/(m2·d) (gross CO2 flux) during plant growth period. CO2 emission rate in the day was stronger than that at night, and the daily peak appears at 19:00. The mire plants in the Sanjiang Plain begin to sprout at the end of April. The aboveground biomass of the mire plants increased from zero to the peak from July to September and showed single peak form. The aboveground biomass of Carex lasiocarpa (464.8g/m2) was lower than that of Deyeuxia platyphylla (530.8g/m2), but the underground biomass was higher than that of Deyeuxia platyphylla. Gross CO2 flux showed the significance positive correlation relationship with plant biomass. Gross CO2 flux and CH4 emission were also correlated with soil temperature (0-5cm) and water temperature. However, the highest CH4 emission rate lagged behind the highest soil temperature in the root area during plant growth period. The data also indicated that wet and warm conditions during the early spring led to greater value of CH4 emission flux. Inundation is the necessary condition for the existence of methane bacteria, but there is no significant positive correlation between the inundation depth and CH4 emission rate in this region. Within the same growing season and under the same inundation condition, the variations of CH4 emission rate could be markedly different.
基金financially supported by National Natural Science Foundation of China(Grant No.2013CB95670241573012+1 种基金4157113004141261058)
文摘Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the isotopic mass balance equation,relative contributions of new versus old SOC,and SOC turnover rate in corn fields were evaluated world-wide.However,most previous research had not analyzed corn debris left in the field,instead using an average corn plant δ^(13)C value or a measured value to calculate the proportion of corn-derived SOC,either of which could bias results.This paper carried out a detailed analysis of isotopic fractionation in corn plants and deduced the maximum possible bias of SOC dynamics study.The results show approximately 3‰ isotopic fractionation from top to bottom of the corn leaf.The ^(13)C enrichment sequence in corn plant was tassel﹥stalk or cob﹥root﹥leaves.Individual parts accounting for the total dry mass of corn returned distinct values.Consequently,the average δ^(13)C value of corn does not represent the actual isotopic composition of corn debris.Furthermore,we deduced that the greater the fractionation in corn plant,the greater the possible bias.To alleviate bias of SOC dynamics study,we suggest two measures:analyze isotopic compositions and proportions of each part of the corn and determine which parts of the corn plant are left in the field and incorporated into SOC.
基金Supported by the Interministerial Commission for Science and Technology(CICYT)of Spain(No.AGL2010-22050-C03-03)
文摘Intensity of tillage practices can enhance organic matter decomposition, increasing CO2 emissions from soil to the atmosphere. Conservation tillage (CT) has been proposed as a means of counteracting potential damages to the environment. In this study the effects of two CT systems, reduced tillage in a long-term experiment (RTL) and no-tillage in a short-term experiment (NTs), were compared to traditional tillage (TT) in the long (TTL) and short-term experiments (TTs). CO2 fluxes, total soil organic carbon (SOC) and dehydrogenase activity (DHA) were evaluated at 0-5, 5-10 and 10-15 cm depths throughout the three years studied (Oct. 2006 Jul. 2009). Traditional tillage increased C02 emissions compared to CT. The CT treatments (RTL and NTs) accumulated more SOC in the surface layer (0 5 cm) than the TT treatments (TTL and TTs). SOC accumulation was moderate but DHA consistently increased in CT in the surface soil, especially with a legume crop included in the crop rotation. Values of stratification ratio of all parameters studied were higher in the CT treatments (RTL and NTs). The agricultural and environmental benefits derived from CT make this system recommendable for semi-arid Mediterranean rain-fed agriculture.
文摘Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible role in carbon sequestration, soil microbes are very important organisms in relation to global climate changes. This review focuses mainly on the responses of soil microbes to climate changes and subsequent effects on soil carbon dynamics. An overview table regarding extracellular enzyme activities(EAA) with all relevant literature data summarizes the effects of different ecosystems under various experimental treatments on EAA. Increasing temperature, altered soil moisture regimes, and elevated carbon dioxide significantly affect directly or indirectly soil microbial activities.High temperature regimes can increase the microbial activities which can provide positive feedback to climate change, whereas lower moisture condition in pedosystem can negate the increase, although the interactive effects still remain unanswered. Shifts in soil microbial community in response to climate change have been determined by gene probing, phospholipid fatty acid analysis(PLFA),terminal restriction length polymorphism(TRFLP), and denaturing gradient gel electrophoresis(DGGE), but in a recent investigations,omic technological interventions have enabled determination of the shift in soil microbe community at a taxa level, which can provide very important inputs for modeling C sequestration process. The intricacy and diversity of the soil microbial population and how it responds to climate change are big challenges, but new molecular and stable isotope probing tools are being developed for linking fluctuations in microbial diversity to ecosystem function.
基金Supported by the National Natural Science Foundation of China (No.30971869)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-438-1)
文摘Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecological experimental station (28° 04'-28° 37' N, 116° 41'-117° 09' E) in Yujiang County, Jiangxi Province, China, we analyzed the dynamic relationship between soil aggregate stability and BASOC content over time in the red soil (Udic Ferrosols) fertilized with a nitrogen-phosphorus-potassium chemical fertilizer (NPK) without manure or with NPK plus livestock manure or green manure. The dynamics of BASOC was evaluated using CO2 efflux, and soil aggregates were separated according to size using a wet-sieving technique. The soils fertilized with NPK plus livestock manure had a significantly higher content of BASOC and an improved aggregate stability compared to the soils fertilized with NPK plus green manure or NPK alone. The BASOC contents in all fertilized soils decreased over time. The contents of large aggregates (800-2 000 μm) dramatically decreased over the first 7 d of incubation, but the contents of small aggregates (〈 800 μm) either remained the same or increased, depending on the incubation time and specific aggregate sizes. The aggregate stability did not differ significantly at the beginning and end of incubation, but the lowest stability in all fertilized soils occurred in the middle of the incubation, which implied that the soils had a strong resilience for aggregate stability. The change in BASOC content was only correlated with aggregate stability during the first 27 d of incubation.
基金supported by the National Natural Science Foundation of China (No.41471177)the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-EW-QN404)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA05050509)
文摘Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results.
基金supported by the Strategic Priority Research Program–Climate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences(Grant No.XDA-05050408)
文摘Based on the Terrestrial Ecosystem Model(TEM 5.0), together with the data of climate(temperature, precipitation and solar radiation) and environment(grassland vegetation types, soil texture, altitude, longitude and latitude, and atmospheric CO2 concentration data), the spatiotemporal variations of carbon storage and density, and their controlling factors were discussed in this paper. The results indicated that:(1) the total carbon storage of China's grasslands with a total area of 394.93×104 km2 was 59.47 Pg C. Among them, there were 3.15 Pg C in vegetation and 56.32 Pg C in soil carbon. China's grasslands covering 7.0–11.3% of the total world's grassland area had 1.3–11.3% of the vegetation carbon and 9.7–22.5% of the soil carbon in the world grasslands. The total carbon storage increased from 59.13 to 60.16 Pg C during 1961–2013 with an increasing rate of 19.4 Tg C yr^(-1).(2) The grasslands in the Qinghai-Tibetan Plateau contributed most to the total carbon storage during 1961–2013, accounting for 63.2% of the total grassland carbon storage, followed by Xinjiang grasslands(15.8%) and Inner Mongolia grasslands(11.1%).(3) The vegetation carbon storage showed an increasing trend, with the average annual growth rate of 9.62 Tg C yr^(-1) during 1961–2013, and temperature was the main determinant factor, explaining approximately 85% of its variation. The vegetation carbon storage showed an increasing trend in most grassland regions, however, a decreasing trend in the central grassland in the southern China, the western and central parts of the Inner Mongolian grasslands as well as some parts on the Qinghai-Tibetan Plateau. The soil carbon storage showed a significantly increasing trend with a rate of 7.96 Tg C yr^(-1), which resulted from the interaction of more precipitation and low temperature in the 1980 s and 1990 s. Among them, precipitation was the main determinant factor of increasing soil carbon increases of China's grasslands.
基金financially supported by University Grants Commission,New Delhi,India in form of a major research project(No.SR36-32 2008) and University Research Fellowships to Ms.Alka Singh and Mr.Mahesh Kumar Singh
文摘The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem. The experiment included application of herbicide (butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer, wheat straw, Sesbania aculeata, and farm yard manure (FYM). Soil microbial biomass showed distinct temporal variations in both crop cycles, decreased from vegetative to grain-forming stage, and then increased to maximum at crop maturity stage. Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide + FYM, herbicide + wheat straw, herbicide + chemical fertilizer, and herbicide alone treatments in decreasing order during the rice-growing period. During wheat-growing period and summer fallow, soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM, herbicide + Sesbania, and herbicide + chemical fertilizer treatments showed similar levels. The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide + chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period. In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide, soil microbial biomass responded differentially to the treatments. The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass, which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.
基金supported by the 'Consejo Nacional de Cienciay y Tecnologia'(CONACyT,Mexico)(research grants Nos.32479-T and 39801-Z)
文摘Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m^(-1) was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-^(14)C kg^(-1) soil and 200 mg NH_4^+-N kg^(-1)soil,and then incubated for 28 d.The CO_2 emissions,soil microbial biomass,and soil ammonium(NE_4^+),nitrite(NO_2^-) and nitrate(NO_3^-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m^(_1) after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added ^(14)C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg^(-1) soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg^(-1) soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH_4^+-amended soil.Ammonium immobilization and NO_2^- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO_3^- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C.
基金supported by the Laboratories of Excellence(LabEx) NUMEV(solutions Numériques,Matricielles et Modélisation pour l’Environnement et le Vivant)the LabEx CEMEB(Centre Méditerranéen de l’Environnement et de la Biodiversité)the Ecoles Doctorales SIBAGHE and I2S of Montpellier
文摘The goal of this paper is to study the mathematical properties of a new model of soil carbon dynamics which is a reaction-diffusion system with a chemotactic term, with the aim to account for the formation of soil aggregations in the bacterial and microorganism spatial organization(hot spot in soil). This is a spatial and chemotactic version of MOMOS(Modelling Organic changes by Micro-Organisms of Soil), a model recently introduced by M. Pansu and his group. The authors present here two forms of chemotactic terms, first a"classical" one and second a function which prevents the overcrowding of microorganisms.They prove in each case the existence of a nonnegative global solution, and investigate its uniqueness and the existence of a global attractor for all the solutions.