期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
西安南郊夏季土壤碳排放量的变化研究 被引量:5
1
作者 赵景波 岳应利 +4 位作者 张晓龙 刘晓琼 郝玉芬 童心刚 李广文 《干旱区研究》 CSCD 2003年第3期206-210,共5页
根据NaOH溶液吸收CO2 的原理 ,对西安南郊土壤CO2 释放量进行观测 ,并探讨了土壤CO2 释放量的变化规律及其影响因素。资料表明 ,温度升高 ,土壤CO2 释放量增大 ;夏季早晚期土壤CO2 排放量较低 ,夏季中期的月份CO2 排放量较高 ;农田玉米... 根据NaOH溶液吸收CO2 的原理 ,对西安南郊土壤CO2 释放量进行观测 ,并探讨了土壤CO2 释放量的变化规律及其影响因素。资料表明 ,温度升高 ,土壤CO2 释放量增大 ;夏季早晚期土壤CO2 排放量较低 ,夏季中期的月份CO2 排放量较高 ;农田玉米地CO2 排放量较低 ,草地和林地CO2 排放量较大 ;与春秋季相比 ,夏季土壤CO2 排放量较大 ;CO2 排放量在一昼夜内具明显的变化规律性 ,这种规律主要是受温度变化控制的。CO2 排放量变化显示 ,深厚黄土层中土壤微生物夜间活动强度大于白天。 展开更多
关键词 西安南郊 夏季 土壤碳排放量 二氧化 温度 土壤微生物 释放规律
原文传递
极端干旱区增雨加速泡泡刺群落土壤碳排放 被引量:11
2
作者 刘殿君 吴波 +2 位作者 李永华 朱雅娟 卢琦 《生态学报》 CAS CSCD 北大核心 2012年第17期5396-5404,共9页
以极端干旱区(敦煌)泡泡刺群落为研究对象,采用动态气室法(Li-8100,USA)于2010年5月至9月测定分析了生长季内增雨对泡泡刺群落土壤碳排放量的影响。结果表明:裸地和灌丛在09:00—11:00的碳排放量与全天碳排放量具有线性正相关关系(裸地R... 以极端干旱区(敦煌)泡泡刺群落为研究对象,采用动态气室法(Li-8100,USA)于2010年5月至9月测定分析了生长季内增雨对泡泡刺群落土壤碳排放量的影响。结果表明:裸地和灌丛在09:00—11:00的碳排放量与全天碳排放量具有线性正相关关系(裸地R2=0.31—0.76,P<0.001;灌丛R2=0.85—0.96,P<0.001)。增雨50%(4 mm)—300%(24 mm)能够加速裸地和灌丛土壤的碳排放,每增雨1 mm,裸地和灌丛土壤的碳排放分别增加0.27和1.12 g/m2。当泡泡刺群落盖度一定时,与对照相比,每增加1 mm降雨,泡泡刺群落土壤碳排放量增加0.69 g/m2。在未来中国西北干旱地区降雨增加背景下,这一研究数据将为进一步估算该区域群落或生态系统碳收支提供可靠的参考数据。 展开更多
关键词 人工模拟增雨 极端干旱区 土壤碳排放量 泡泡刺
下载PDF
岩溶峡谷区石漠化对土壤碳排放的影响 被引量:2
3
作者 郭红艳 周金星 +2 位作者 崔明 但新球 丁访军 《北京林业大学学报》 CAS CSCD 北大核心 2014年第1期26-33,共8页
土壤在全球碳平衡中具有举足轻重的作用,而土地利用变化对土壤碳排放的影响也是极其敏感的。针对贵州岩溶峡谷地区石漠化导致的土地退化对土壤碳排放的影响进行研究。试验定位监测样地选取在石漠化典型地区——贵州省关岭布依族苗族自... 土壤在全球碳平衡中具有举足轻重的作用,而土地利用变化对土壤碳排放的影响也是极其敏感的。针对贵州岩溶峡谷地区石漠化导致的土地退化对土壤碳排放的影响进行研究。试验定位监测样地选取在石漠化典型地区——贵州省关岭布依族苗族自治县花江峡谷区,于2012年7月至2013年4月采用动态气室法(Li-8100,USA)监测了未石漠化土地和不同程度石漠化土地的土壤呼吸速率日动态和季节动态变化,通过关岭布依族苗族自治县治理前后石漠化程度监测数据分析,定量评价了石漠化对区域土壤碳排放量的影响,可为定量评价石漠化对土壤碳汇功能的影响提供科学依据。研究结果表明:1)岩溶区土壤呼吸速率与土地的石漠化程度具有很高的关联性,石漠化程度越高,土壤碳排放量越低,极重度石漠化土地样地土壤碳排放量约为非石漠化的1/2;2)非石漠化土地土壤呼吸具有明显的季节变化,而石漠化土地土壤呼吸则不再遵循植物生长的季节顺序发生变化,土壤呼吸随季节的这种变化规律被打破;3)区域碳排放变化量与石漠化治理效果有关,2005—2010年关岭布依族苗族自治县实施石漠化治理后,区域土壤呼吸产生的碳排放量增加了41 800 t,相当于关岭布依族苗族自治县岩溶区增加了31.92t/km2。 展开更多
关键词 岩溶石漠化 土壤碳排放量 花江岩溶峡谷区 关岭布依族苗族自治县
下载PDF
长期定位施肥下黑土碳排放特征及其碳库组分与酶活性变化 被引量:34
4
作者 贺美 王立刚 +2 位作者 朱平 戚瑞敏 王迎春 《生态学报》 CAS CSCD 北大核心 2017年第19期6379-6389,共11页
黑土作为承担我国粮食安全与生态安全的重要土壤资源,其碳排放特征与碳库组分变化一直是生态学领域研究的热点。施肥是影响黑土有机碳输入、输出的重要因素,而这需要长时间尺度的探究。为明确长期不同施肥下的土壤碳排放特征及其影响机... 黑土作为承担我国粮食安全与生态安全的重要土壤资源,其碳排放特征与碳库组分变化一直是生态学领域研究的热点。施肥是影响黑土有机碳输入、输出的重要因素,而这需要长时间尺度的探究。为明确长期不同施肥下的土壤碳排放特征及其影响机制,以始于1990年的国家土壤肥力与肥料效益监测网站黑土监测基地-公主岭为研究平台,选取不施肥(CK)、单施氮磷钾肥(NPK)、无机肥配施低量有机肥(NPKM1)、1.5倍的无机肥配施低量有机肥(1.5(NPKM1))、无机肥配施高量有机肥(NPKM2)和无机肥配施秸秆(NPKS)6个处理,探讨了长期不同施肥下土壤碳排放量(CO2-C)与土壤碳库组分包括水溶性有机碳(DOC)、微生物量碳(MBC)、颗粒有机碳(POC)、易氧化有机碳(ROC)及其β-葡萄糖苷酶(BG)、木聚糖酶(BXYL)、纤维素酶(CBH)和乙酰基β-葡萄糖胺酶(NAG)等酶活性变化。结果表明:与CK相比,各施肥处理均可以显著增加黑土土壤碳排放量(P<0.05),其中,NPK处理土壤碳排放量约为2633.33 kg/hm^2,显著高出CK处理37.36%;长期有机无机配施(NPKM1、1.5(NPKM1)、NPKM2)显著增加土壤碳排放量71.81%—88.51%,效果最为明显;NPKS显著增加土壤碳排放量56.32%,并且三种长期有机无机配施措施碳排放差异不显著。相对CK处理,有机无机配施的DOC、MBC、POC、ROC均有显著增加(P<0.05),各指标分别高出CK处理16.07%—56.34%、128.84%—185.77%、284.15%—497.45%和841.03%—1145.94%,其中1.5(NPKM1)处理效果最好。同时,有机无机配施相对CK处理的NAG、BG、BXYL和CBH活性分别提高了313.22%—452.65%、129.45%—250.74%、159.08%—273.32%和72.21%—193.53%,且以1.5(NPKM1)处理的效果最好。土壤碳排放量与土壤酶活性、土壤活性碳库组分之间的相关性分析结果表明,长期不同施肥措施的土壤碳排放量不但与土壤ROC、DOC、POC、MBC含量呈极显著相关(P<0.001),也与土壤BG、NAG、CBH、BXYL酶活性呈极显著相关(P<0.001),说明施肥可以通过改变土壤各活性碳库组分含量与土壤微生物活性影响土壤碳排放量。 展开更多
关键词 长期施肥 土壤碳排放量 土壤活性库组分 土壤酶活性
下载PDF
Soil carbon dioxide fluxes of a typical broad-leaved/Korean pine mixed forest in Changbai Mountain, China 被引量:3
5
作者 王琛瑞 吴劼 +1 位作者 梁战备 黄国宏 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第4期268-272,共5页
The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static clos... The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvi-ous law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.302.42 mmol穖-2穝-1 with the mean value of 0.98 mmol穖-2穝-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%) mmol穖-2穝-1) and the minimum was in September ((0.50±28%) mmol穖-2穝-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09–3.40. 展开更多
关键词 Soil CO2 flux Broad-leaved/Korean pine mixed forest Q10 value Changbai Mountain
下载PDF
Advances in Greenhouse Gases Emission in Farmland Soils 被引量:2
6
作者 王璐 蒋跃林 《Agricultural Science & Technology》 CAS 2012年第8期1738-1743,共6页
[Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, C... [Objective] The aim was to overview the emission of greenhouse gases in farmland. [Method] Based on domestic and foreign references, production mechanism, discharging characters and major influential factors of CO2, CH4 and N2O in soils of farmland were overviewed. [Result] Production and discharge of CO2, CH. and N2O played an important role in circulation of carbon and nitrogen in terrestrial ecosystem and constituted a key method for carbon and nitrogen output. It is significant to conduct research on reduction of greenhouse gas and increase of absorption. [Conclusion] The research is beneficial for exploration on discharge rule and influential factors of greenhouse gases, providing theoretical references for reduction of greenhouse gases and study on climate change. 展开更多
关键词 Farmland soils Carbon dioxide METHANE Nitrous oxide Emission flux influential factors
下载PDF
Carbon and Nitrogen Transformations in Surface Soils Under Ermans Birch and Dark Coniferous Forests 被引量:5
7
作者 DENG Xiao-Wen HAN Shi-Jie +1 位作者 HU Yan-Ling ZHOU Yu-Mei 《Pedosphere》 SCIE CAS CSCD 2009年第2期230-237,共8页
Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northe... Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northeast China, to compare soil carbon (C) and nitrogen (N) transformations in the two forests. The soil type is Umbri-Gelic Cambosols in Chinese Soil Taxonomy. Soil samples were incubated aerobically at 20℃ and field capacity of 700 g kg^-1 over a period of 27 weeks. The amount of soil microbial biomass and net N mineralization were higher in the Ermans birch than the dark coniferous forest (P 〈 0.05), whereas the cumulative C mineralization (as CO2 emission) in the dark coniferous forest exceeded that in the Ermans birch (P 〈 0.05). Release of the cumulative dissolved organic C and dissolved organic N were greater in the Ermans birch than the dark coniferous forest (P 〈 0.05). The results suggested that differences of forest types could result in considerable change in soil C and N transformations. 展开更多
关键词 dissolved organic C dissolved organic N Ermans birch-dark coniferous forest soil C transformation soil N transformation
下载PDF
Effect on greenhouse gas balance of converting rice paddies to vegetable production
8
作者 Lei Wu Xian Wu Ronggui Hu 《Acta Geochimica》 EI CAS CSCD 2017年第3期353-354,共2页
Rice paddies are increasingly being converted to vegetable production due to economic benefits related,in part,to changes in demand during recent decades.Here,we implemented a parallel field experiment to simultaneous... Rice paddies are increasingly being converted to vegetable production due to economic benefits related,in part,to changes in demand during recent decades.Here,we implemented a parallel field experiment to simultaneously measure annual emissions of CH_4and N_2O,and soil organic carbon(SOC)stock changes,in rice paddies(RP),rice paddy–converted conventional vegetable fields(CV),and rice paddy–converted greenhouse vegetable fields(GV).Changing from rice to vegetable production reduced CH_4emissions by nearly 100%,and also triggered substantial N_2O emissions.Furthermore,annual N_2O emissions from GV significantly exceeded those from CV due to lower soil p H and higher soil temperature.Marginal SOC losses occurred after one year of cultivation of RP,CV,and GV,contributing an important share(3.4%,32.2%,and 10.3%,respectively)of the overall global warming potential(GWP)balance.The decline in CH_4emissions outweighed the increased N_2O emissions and SOC losses in CV and GV,leading to a 13%–30%reduction in annual GWP as compared to RP.These results suggest that large-scale expansion of vegetable production at the expense of rice paddies is beneficial for mitigating climate change in terms of the overall GWP. 展开更多
关键词 Greenhouse gas balance Land management change CH4 N2O Soil organic carbon
下载PDF
Soil Carbon Dioxide Efflux and Atmospheric Impact in a 10-Year-Old Dipterocarpus Recovering Lowland Tropical Forest, Peninsular Malaysia
9
作者 Mande Kato Hosea Ahmad Makmom Abdullah +11 位作者 Ahamad Zaharin Aris Ahmad Ainuddin Nuruddin Nghai Ezekiel Suleman Kasham J. Shamang Baji Julius Babarinsa Deborah Sabo Douglas Gugong K. Benjamin Bala Dogo Sim Haruna Gabriel Emmanuel Elimisiemon M. Christopher 《Journal of Earth Science and Engineering》 2017年第1期37-50,共14页
The recovering logged-over forest ecosystem increases the CO2 efflux into the atmospheric carbon pool in response to environmental factors to changes in the soil temperature and moisture. These CO2 outbursts can have ... The recovering logged-over forest ecosystem increases the CO2 efflux into the atmospheric carbon pool in response to environmental factors to changes in the soil temperature and moisture. These CO2 outbursts can have a marked influence on the ecosystem carbon balance and thereby affect the atmospheric carbon pool. The study was conducted in the 10-year-old logged-over forest of Sungai Menyala forest, Port Dickson, Negeri Sembilan, Malaysia. The measurements of soil CO2 efflux were conducted using the continuous open flow chamber technique connected to a multi gas-handling unit and infrared CO2/H2O gas analyser. The aim of this study was to determine the soil CO2 efflux and the environmental variables and likewise the impact of environmental factors on soil CO2 efflux. Post-hoc comparisons were made using the Tukey test (p 〈 0.05), and multiple linear regression to determine the impact of environmental factors on soil CO2 efflux. Soil CO2 efflux ranged from 100.22-553.40 mg m^-2 h^-1 with the highest efflux in the afternoon attributed to an increase in soil temperature and low moisture. A higher soil temperature and low moisture signify an influential factor as the forest is recovering from logging activity. Furthermore, the predictor environmental variables: SOC (soil organic carbon), TOC (total organic carbon), SMC (soil moisture content), Bulk Density, SOCstock (soil organic carbon stock), TAGB (total above ground carbon biomass), Below Ground Carbon Biomass, soil pH, Nitrogen to Carbon ratio account for the spatial and temporal variation in soil CO: efflux into the atmosphere. The analysis revealed a strong correlation between soil CO2 efflux, changes soil properties and environmental factors with an R^2 more than 0.80 at p 〈 0.01. This is proven that logging activity accounts for the changes in environmental factors to influence soil CO2 efflux rate within 10-years of logging and forest recovering. 展开更多
关键词 BIOMASS forest ecosystem carbon pool carbon sink and soil CO2 efflux.
下载PDF
Substrate availability regulates the suppressive effects of Canada goldenrod invasion on soil respiration 被引量:1
10
作者 Zhiyuan Hu Jiaqi Zhang +7 位作者 Yizhou Du Kangwei Shi Guangqian Ren Babar Iqbal Zhicong Dai Jian Li Guanlin Li Daolin Du 《Journal of Plant Ecology》 SCIE CSCD 2022年第3期509-523,共15页
Invasive alien plants not only decrease riparian vegetation diversity but also alter wetland ecosystem carbon processes,especially when they displace the original vegetation.Invasive Canada goldenrod(Solidago canadens... Invasive alien plants not only decrease riparian vegetation diversity but also alter wetland ecosystem carbon processes,especially when they displace the original vegetation.Invasive Canada goldenrod(Solidago canadensis L.)has colonized large areas of disturbed and undisturbed land in southeastern China,yet little is known regarding how it affects soil carbon cycling.To explore the response patterns of soil respiration following S.canadensis invasion and their driving mechanisms,an observational field study and a greenhouse experiment simulating invasion were performed.In the field study,soil respiration was measured weekly from 21th July 2018 to 15th December 2018.In the greenhouse experiment,soil,autotrophic and heterotrophic respiration were measured every 1st and 15th of the month from 15th July 2019 to 15th December 2019.Soil,autotrophic and heterotrophic respiration were measured using a closed-chamber system with the deep gauze collar root exclusion method.Solidago canadensis invasion appeared to decrease the total soil CO_(2) emissions in both the field study and the greenhouse experiment.The suppressive effects on soil respiration may be attributed to S.canadensis invasion-induced alterations in the quality and quantity of available soil substrate,suggesting that S.canadensis invasion may impact soil carbon cycling via plant-released substrates and by competing for the soil available substrate with native plant and/or soil microbes.These results have substantial implications for estimations of the effects of invasive plants on belowground carbon dynamics and their contribution to the warming world. 展开更多
关键词 Solidago canadensis L.Phragmites australis(Cav.)Trin.ex Steud soil CO_(2) emission oil substrate availability competition carbon cycling
原文传递
Saline-Sodic Soils:Potential Sources of Nitrous Oxide and Carbon Dioxide Emissions? 被引量:8
11
作者 Upasana GHOSH Resham THAPA +2 位作者 Thomas DESUTTER HE Yangbo Amitava CHATTERJEE 《Pedosphere》 SCIE CAS CSCD 2017年第1期65-75,共11页
Increasing salt-affected agricultural land due to low precipitation, high surface evaporation, irrigation with saline water, and poor cultural practices has triggered the interest to understand the influence of salt o... Increasing salt-affected agricultural land due to low precipitation, high surface evaporation, irrigation with saline water, and poor cultural practices has triggered the interest to understand the influence of salt on nitrous oxide (N20) and carbon dioxide (CO2) emissions from soil. Three soils with varying electrical conductivity of saturated paste extract (ECe) (0.44-7.20 dS m-1) and sodium adsorption ratio of saturated paste extract (SARe) (1.1-27.7), two saline-sodic soils (S2 and S3) and a non-saline, non-sodic soil (S1), were incubated at moisture levels of 40%, 60%, and 80% water-filled pore space (WFPS) for 30 d, with or without nitrogen (N) fertilizer addition (urea at 525μg g-1 soil). Evolving CO2 and N20 were estimated by analyzing the collected gas samples during the incubation period. Across all moisture and N levels, the cumulative N20 emissions increased significantly by 39.8% and 42.4% in S2 and S3, respectively, compared to S1. The cumulative CO2 emission from the three soils did not differ significantly as a result of the complex interactions of salinity and sodicity. Moisture had no significant effect oi1 N20 emissions, but cumulative CO2 emissions increased significantly with an increase in moisture. Addition of N significantly increased cumulative N20 and CO2 emissions. These showed that saline-sodic soils can be a significant contributor of N20 to the environment compared to non-saline, non-sodic soils. The application of N fertilizer, irrigation, and precipitation may potentially increase greenhouse gas (N20 and CO2) releases from saline-sodic soils. 展开更多
关键词 CO2 electrical conductivity greenhouse gas emission MOISTURE N fertilizer application N20 SALINITY SODICITY sodiumadsorption ratio
原文传递
Effect of Additional Carbonates on CO_2 Emission from Calcareous Soil During the Closed-Jar Incubation 被引量:3
12
作者 DONG Yan-Jie CAI Miao +1 位作者 LIANG Bin ZHOU Jian-Bin 《Pedosphere》 SCIE CAS CSCD 2013年第2期137-142,共6页
The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbon... The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0~ in the CaCO3 amended soil to 460~0 in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgC12 should not be used to sterili~.e calcareous soil if the experiment includes the measurement of soil CO2 production. 展开更多
关键词 CaCO3 incubation method inorganic carbon MGCO3 soil organic carbon
原文传递
Surface Soil Properties Influence Carbon Oxide Pulses After Precipitation Events in a Semiarid Vineyard Under Conventional Tillage and Cover Crops 被引量:1
13
作者 Fernando PEREGRINA 《Pedosphere》 SCIE CAS CSCD 2016年第4期499-509,共11页
In semiarid regions of the Mediterranean basin, a rainfall event can induce a respiratory pulse that releases a large amount of soil carbon dioxide (CO2) into the atmosphere; this pulse can significantly contribute ... In semiarid regions of the Mediterranean basin, a rainfall event can induce a respiratory pulse that releases a large amount of soil carbon dioxide (CO2) into the atmosphere; this pulse can significantly contribute to the annual ecosystem carbon (C) balance. The impacts of conventional tillage and two different cover crops, resident vegetation and Bromus catharticus L., on soil CO2 effiux were evaluated in a Vitis vinifera L. vineyard in La Rioja, Spain. Soil CO2 efflux, gravimetric water content, and temperature were monitored at a depth of 0-5 cm after rainfall precipitation events approximately every 10 d in the period from May 17 to July 27, 2012, during which the cover crops had withered. Additionally, on June 10, 2012, soil organic C, microbial biomass C, and I^-glucosidase activity were determined at soil depths of 0-2.5, 2.5-5, 5-15, and 15-25 cm. The results show that pulses of soil CO2 were related to the increase in soil water content following precipitation events. Compared to the conventional tillage treatment, both cover crop treatments had higher soil CO2 efflux after precipitation events. Both cover crop treatments had higher soil organic C, microbial biomass C, and β-glucosidase activity at the soil surface (0-2.5 cm) than the conventional tillage treatment. Each pulse of CO2 was related to the surface soil properties. Thus, this study suggests that the enhancement of soil organic C and microbiological properties at the soil surface under cover crops may increase soil CO2 efflux relative to conventional tillage immediately after precipitation events during the dry season. 展开更多
关键词 microbial biomass C β-glucosidase activity soil CO2 effiux soil water content soil temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部