There are interactions between phosphorus (P) and some micronutrients which can affect their availability if P is applied as a fertilizer in high concentrations. There are many mechanisms of interactions between P a...There are interactions between phosphorus (P) and some micronutrients which can affect their availability if P is applied as a fertilizer in high concentrations. There are many mechanisms of interactions between P and micronutrients and changes in pH values caused by phosphate fertilization is one of them. These interactions between nutrients might be more pronounced under a no-tillage system which produces stratification and accumulation of few mobile nutrients as P in the surface horizons due to the lack of soil removement. The objectives of this study were: (1) to evaluate the effect of P concentration on the availability ofCu, Zn, Fe and Mn in soil under no-tillage system; (2) to produce maps of nutrients availability and to analyze whether an interaction between nutrients spatial distribution exists. The study was carried out in Parana, province of Entre Rios, in a soil classified as Vertic Argiudol in two consecutive growing seasons (2006 and 2007). A plot of 1 (one) hectare under no-tillage system with a double-cropped wheat-soybean rotation in sequence (soybean sowing after wheat harvest) was sampled by the grid methods. The results of this study suggest which tillage regime and phosphate fertilization increased P levels in superficial horizons and this produced a negative relationship between micronutrients and P. Regarding the nutrients map distributions, the negative interaction between P and micronutrients was clearly seen in the case ofFe_ Mn and Zn.展开更多
文摘There are interactions between phosphorus (P) and some micronutrients which can affect their availability if P is applied as a fertilizer in high concentrations. There are many mechanisms of interactions between P and micronutrients and changes in pH values caused by phosphate fertilization is one of them. These interactions between nutrients might be more pronounced under a no-tillage system which produces stratification and accumulation of few mobile nutrients as P in the surface horizons due to the lack of soil removement. The objectives of this study were: (1) to evaluate the effect of P concentration on the availability ofCu, Zn, Fe and Mn in soil under no-tillage system; (2) to produce maps of nutrients availability and to analyze whether an interaction between nutrients spatial distribution exists. The study was carried out in Parana, province of Entre Rios, in a soil classified as Vertic Argiudol in two consecutive growing seasons (2006 and 2007). A plot of 1 (one) hectare under no-tillage system with a double-cropped wheat-soybean rotation in sequence (soybean sowing after wheat harvest) was sampled by the grid methods. The results of this study suggest which tillage regime and phosphate fertilization increased P levels in superficial horizons and this produced a negative relationship between micronutrients and P. Regarding the nutrients map distributions, the negative interaction between P and micronutrients was clearly seen in the case ofFe_ Mn and Zn.