期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合大核注意力机制的土壤种类识别网络
1
作者
刘康
曾绍华
+2 位作者
胡静
刘国一
李超
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2023年第3期129-138,共10页
【目的】为解决因土壤图像纹理复杂、没有结构性特征导致的传统卷积神经网络模型难以提取其中关键性特征、识别准确率低的问题,提出了一种大核注意力(large kernel attention,LKA)机制模块与ResNet模型融合的土壤种类识别网络模型VAR(vi...
【目的】为解决因土壤图像纹理复杂、没有结构性特征导致的传统卷积神经网络模型难以提取其中关键性特征、识别准确率低的问题,提出了一种大核注意力(large kernel attention,LKA)机制模块与ResNet模型融合的土壤种类识别网络模型VAR(visual attention ResNet),以解决土壤种类样本不平衡和难分类样本造成的模型泛化能力弱的问题。【方法】以ResNet为主干网络,在主干中引入LKA机制,减少其中的残差块,构建土壤种类识别网络VAR,并改进网络的焦点损失函数(Focal Loss)。【结果】(1)与传统模型ResNet18、ResNet34、VGG、GooleNet、VAN等相比,VAR模型在特定模型参数下对紫色土土壤图像数据集中土壤种类的识别精度更高;(2)用3种不同大小VAR模型之一的VAR_small与以ResNet18为主干并嵌入传统注意力机制SE、CBAM、ECA和SK的网络进行对比,实验结果显示LKA机制在土壤识别方面更加优秀;(3)改进的Focal Loss可让VAR更能注意到难分类的土壤图像样本。【结论】将LKA机制模块与ResNet模型融合的土壤种类识别网络模型VAR增强了网络提取土壤图像中关键性结构特征能力,同时还减少了网络参数,能更加有效地识别土壤种类。
展开更多
关键词
土壤种类识别
VAR
大核注意力
焦点损失函数
原文传递
题名
融合大核注意力机制的土壤种类识别网络
1
作者
刘康
曾绍华
胡静
刘国一
李超
机构
重庆师范大学计算机与信息科学学院
重庆市数字农业服务工程技术研究中心
重庆市农村土地整治中心
西藏自治区农牧科学院农业资源与环境研究所
重庆市铜梁区农业农村委员会
出处
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2023年第3期129-138,共10页
基金
重庆市教育委员会科学技术研究重点项目(No.KJZD-K201900505)
重庆市高校创新研究群体(No.CXQT20015)
重庆师范大学研究生科研创新项目(No.YKC22016)
文摘
【目的】为解决因土壤图像纹理复杂、没有结构性特征导致的传统卷积神经网络模型难以提取其中关键性特征、识别准确率低的问题,提出了一种大核注意力(large kernel attention,LKA)机制模块与ResNet模型融合的土壤种类识别网络模型VAR(visual attention ResNet),以解决土壤种类样本不平衡和难分类样本造成的模型泛化能力弱的问题。【方法】以ResNet为主干网络,在主干中引入LKA机制,减少其中的残差块,构建土壤种类识别网络VAR,并改进网络的焦点损失函数(Focal Loss)。【结果】(1)与传统模型ResNet18、ResNet34、VGG、GooleNet、VAN等相比,VAR模型在特定模型参数下对紫色土土壤图像数据集中土壤种类的识别精度更高;(2)用3种不同大小VAR模型之一的VAR_small与以ResNet18为主干并嵌入传统注意力机制SE、CBAM、ECA和SK的网络进行对比,实验结果显示LKA机制在土壤识别方面更加优秀;(3)改进的Focal Loss可让VAR更能注意到难分类的土壤图像样本。【结论】将LKA机制模块与ResNet模型融合的土壤种类识别网络模型VAR增强了网络提取土壤图像中关键性结构特征能力,同时还减少了网络参数,能更加有效地识别土壤种类。
关键词
土壤种类识别
VAR
大核注意力
焦点损失函数
Keywords
soil species classification
VAR
large kernel attention
focal loss function
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
融合大核注意力机制的土壤种类识别网络
刘康
曾绍华
胡静
刘国一
李超
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部