Soil microorganisms play a central role in decomposing organic matter, in determining the release of mineral nutrients, and in nutrient cycling. Recently, extensive studies have focused on soil microbial diversity. Ho...Soil microorganisms play a central role in decomposing organic matter, in determining the release of mineral nutrients, and in nutrient cycling. Recently, extensive studies have focused on soil microbial diversity. However, understanding the diversity of this complex microbial community in the soil environment is a challenging task. Thus, it is important to master and comprehend appropriate methods for studying soil microbial diversity. Concepts of soil microbial diversity and major methods of study are briefly introduced in this paper. Then, the application of biochemical-based and molecular-based techniques in this area, and their advantages and disadvantages are evaluated. Based on recent related research, perspectives for studying microbial diversity in soils are presented.展开更多
The effects of slope aspects on soil biogeochemical properties and plant communities in forested environments have been studied extensively; however, slope aspect influence on soil microbial communities remains largel...The effects of slope aspects on soil biogeochemical properties and plant communities in forested environments have been studied extensively; however, slope aspect influence on soil microbial communities remains largely unexamined, despite the central role of soil biota in ecosystem functioning. In this study, the communities of both soil bacteria and arbuscular mycorrhizal fungi (AMF) were investigated using tagged pyrosequencing for three types of slope aspects (south-facing aspect, north-facing aspect and flat area) in a boreal forest of the Greater Khingan Mountains, China. The bacterial and AMF community composition differed with slope aspects. Bacterial diversity was the lowest on the north-facing aspect, and AMF diversity was the lowest on the flat area. Aspects also had a significant impact on soil pH and available phosphorus (P) and shrubby biomass. Soil pH and understory shrub biomass were significantly correlated with bacterial communities, and soil available P and shrub biomass showed significant correlations with AMF communities. Our results suggested that slope aspects affected bacterial and AMF communities, mediated by aspect-induced changes in plant community and soil chemical properties (e.g., pH and available P), which improved the knowledge on the effects of forest slope aspects on aboveground and belowground communities.展开更多
基金Project supported by the National Key Basic Research and Development Program of China (No. 2002CB111505).
文摘Soil microorganisms play a central role in decomposing organic matter, in determining the release of mineral nutrients, and in nutrient cycling. Recently, extensive studies have focused on soil microbial diversity. However, understanding the diversity of this complex microbial community in the soil environment is a challenging task. Thus, it is important to master and comprehend appropriate methods for studying soil microbial diversity. Concepts of soil microbial diversity and major methods of study are briefly introduced in this paper. Then, the application of biochemical-based and molecular-based techniques in this area, and their advantages and disadvantages are evaluated. Based on recent related research, perspectives for studying microbial diversity in soils are presented.
基金We thank Ms. LIU Weili, Dr. CAI Wenhua, Mr. LIU Bo, and Dr. FANG Lei from the Institute of Ap- plied Ecology, Chinese Academy of Sciences for assis- tance in sampling and Dr. XIONG Jingbo from the Ningbo University of China for assistance in bioinfor- matic analysis. This research was supported by the Strategic Priority Research Program of Chinese Aca- demy of Sciences (No. XDB15010101), the National Basic Research Program (973 Program) of China (No. 2014CB954002), and the National Natural Science Foundation of China (No. 41371254).
文摘The effects of slope aspects on soil biogeochemical properties and plant communities in forested environments have been studied extensively; however, slope aspect influence on soil microbial communities remains largely unexamined, despite the central role of soil biota in ecosystem functioning. In this study, the communities of both soil bacteria and arbuscular mycorrhizal fungi (AMF) were investigated using tagged pyrosequencing for three types of slope aspects (south-facing aspect, north-facing aspect and flat area) in a boreal forest of the Greater Khingan Mountains, China. The bacterial and AMF community composition differed with slope aspects. Bacterial diversity was the lowest on the north-facing aspect, and AMF diversity was the lowest on the flat area. Aspects also had a significant impact on soil pH and available phosphorus (P) and shrubby biomass. Soil pH and understory shrub biomass were significantly correlated with bacterial communities, and soil available P and shrub biomass showed significant correlations with AMF communities. Our results suggested that slope aspects affected bacterial and AMF communities, mediated by aspect-induced changes in plant community and soil chemical properties (e.g., pH and available P), which improved the knowledge on the effects of forest slope aspects on aboveground and belowground communities.