Fixed ammonium contents and fixation capacities of some representative cultivated soils collectedfrom 16 provinces of China were studied. Results showed that the contents of fixed ammonium in soilsranged from 35 to 5...Fixed ammonium contents and fixation capacities of some representative cultivated soils collectedfrom 16 provinces of China were studied. Results showed that the contents of fixed ammonium in soilsranged from 35 to 573 mg N kg ̄(-1), with an average of 198 mg N kg ̄(-1). The content of fixed ammoniumcorrelated very significantly with mica content for tropical and subtropical soils, whereas this was not thecase for soils in the temperate zone. At the end of K-exhansting experiment the fixed ammonium contentincreased in most soils studied. However, it decreased in some temperate soils. Generally, fixation of addedNH could not be found either before or after K-exhausting experiment for highly weathered soils, includingtropical soils and soils derived from granite-gneiss or Quaternary red clays in the subtropic zonet while formost soils in the Yangtze River dalta the NH fixation capacity was rather high and increased siguificantlyin the K-exhausted soils.展开更多
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experi...To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.展开更多
The effect of conservation tillage methods and seeding machines on the soil physical properties, performance of grain drill, wheat yield, and wheat yield components was evaluated. The research was conducted in a split...The effect of conservation tillage methods and seeding machines on the soil physical properties, performance of grain drill, wheat yield, and wheat yield components was evaluated. The research was conducted in a split block experimental design with twelve treatments and four replications, and a local wheat variety (Shiraz) was planted in this study. Main plots were tillage methods including: (1) primary tillage using moldboard plow without moldboard; (2) primary tillage with disk harrow; and (3) primary tillage with chisel plow. Subplots were grain drill types including: (1) planting with Taka grain drill without furrower; (2) planting with Taka grain drill having furrower; (3) planting with Hamadan Machine Barzegar grain drill having furrower and runner opener; 4) planting with grain drill having ripple opener. Parameters including mean weight diameter of clods (MWD), soil bulk density, uniformity of seed planting depth, seed distribution uniformity, seed emergence, crop yield, and crop yield components were measured. SAS software was used to analyze the collected data and the method of benefit to cost ratio was used to compare the treatments from the economic point of view. Results indicated that tillage method had no significant effect (P = 0.05) on the measured parameters. Plant per unit area, seed emergence, uniformity of seed planting depth, and MWD were significantly affected by the grain drill type (P 〈 0.05) while, the type of grain drill had no significant effect on the rest of measured parameters. Taka grain drill without furrower had the highest uniformity of planting depth and proper soil MWD, and grain drill with ripple opener had the highest seed emergence and plant per unit area. Interaction between tillage methods and grain drill types affected the soil MWD, seed emergence, and crop yield (P 〈 0.05) in such a way that the combination of primary tillage with disk harrow and planting with grain drill having ripple opener provided the highest crop yield.展开更多
The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil m...The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity;the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northern part of China. However, during the weak years, the summer rainfall belt is largely located over the mid-and lower-reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.展开更多
A greenhouse pot experiment was conducted to study the effect of drought induced at different phenological stages on growth, biomass production and yield performance of grain amaranth Amaranthus cruentus G6. After eme...A greenhouse pot experiment was conducted to study the effect of drought induced at different phenological stages on growth, biomass production and yield performance of grain amaranth Amaranthus cruentus G6. After emergence seedlings were exposed to different soil water regimes: constant adequate moisture (W1) and drought (W2) throughout the growing period, drought initiated at crop inflorescence formation (W3), drought condition during pre-inflorescence formation (W4) and treatment W5 where drought condition occurred in the period from the beginning of inflorescence formation to the beginning of flowering. Crop samples were taken at the maturity. The growth and yield performance of amaranth were assessed by measuring root length, stem height and inflorescence length, and by evaluating fresh and dry weight of plant parts, grain yield and harvest index. Drought stress initiated at different phenological stages affected the evaluated morphological parameters, assimilate allocation and grain yield. Drought throughout the growing period resulted in grain and biomass yield reduction for 51% and 50%, respectively. Water deficit during inflorescence formation appears to be critical growing stage influencing grain yield, while soil drying in the vegetative growth stages improve the assimilate allocation to the above-ground biomass and particularly to the grain.展开更多
The performance of a I-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP...The performance of a I-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP) during the non-growing period, when the ground surface was covered with bare soil. Comparisons between simulated and observed soil surface energy balance components as well as soil temperatures and water contents were conducted to validate the soil model. Results show that the soil model could produce good simulations of soil surface temperature, net radiation flux, and sensible heat flux against observed values with the RMSE of 1.54℃, 7.71 W m^-2, and 27.79 W m^-2, respectively. The simulated volumetric soil water content is close to the observed values at various depths with the maximal difference between them being 0.03. Simulated latent heat and ground heat fluxes have relatively larger errors in relative to net radiation and sensible heat flux. In conclusion, the soil model has good capacity to simulate the bare soil surface energy balance at the Tongyu cropland station and needs to be further tested in longer period and at more sites in semiarid areas.展开更多
Peculiar characteristics of soils of Zarafshan valley are salinity with carbonates. It is recommended to introduce large amount of manure or other organic fertilizers in these soils to improve soil reclamation. But cu...Peculiar characteristics of soils of Zarafshan valley are salinity with carbonates. It is recommended to introduce large amount of manure or other organic fertilizers in these soils to improve soil reclamation. But currently there is no possibility to collect so many organic fertilizers in Uzbekistan. That is why other ways of production of organic fertilizers for improving soil fertility were searched. In the experiment, the influence of composts was studied, which prepared from tobacco wastes and manure on agrochemical properties of soils of Zarafshan valley, and production of composts from these industrial wastes, two salted with magnesium carbonates and yield-capacity of com. With the problems that exist in Uzbekistan can be solved at once. These include problems of environmental contamination through wastes and ensuring with organic fertilizers in the irrigated soils. Introduction of composts in the doze of 30 t.ha1 separately and on the background of mineral-NPK (nitrogen, phosphorus and potassium) fertilizers increased the humus content, total NPK and mobile nutritious substances in soil. It is proved that composts, prepared from tobacco wastes with their effect on the yield capacity and quality ofcoru production, can successfully substitute manure. Composts positively influence on the balance of nutritious substances in the system of soil-corn.展开更多
As the most diverse metazoan taxa,soil nematodes serve a diversity of functions in soil food webs and thus can regulate microbial community composition and affect organic matter decomposition and nutrient turnover rat...As the most diverse metazoan taxa,soil nematodes serve a diversity of functions in soil food webs and thus can regulate microbial community composition and affect organic matter decomposition and nutrient turnover rates.Because nematodes depend on water flms to access food resources,drought can negatively affect nematode-microbial food webs,yet the impacts of drought on nematode diversity and abundance and how these changes may infuence food web members and their functions are hardly explored.Here,we coupled research along a drought gradient in arid and semiarid grasslands with a detailed intact plant-soil microcosm experiment to explore the patterns and mechanisms of how drought impacts nematode abundance and carbon footprint,microbial phospholipid fatty acid(PLFA)and heterotrophic soil respiration.Overall,in the feld and the microcosm experiments,we found that nematode abundance,carbon footprint and diversity,microbial PLFA and heterotrophic respiration were reduced under drier conditions.In addition,drought altered nematode and microbial community composition,through reducing the nematode channel ratio and increasing the relative fungivorous nematode abundance and the fungal to bacterial ratio.The soil decomposition channel shifted from a bacterial to a fungal pathway in response to drought,indicating decelerated heterotrophic respiration under drought.These results highlight the important contribution of soil nematodes and their associated microbial food web to soil carbon cycling.Our fndings underscore the need to incorporate key soil fauna into terrestrial ecosystem model evaluation.展开更多
We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFT...We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFTs) and environmental factors affect the spatial pattern of leaf N. The results showed that mean leaf N was 17.7 mg g^-1 for all plant species. The highest and lowest leaf N were found in deciduous-broadleaf and evergreen-conifer species, respectively, and the ranking of leaf N from high to low was: deciduous 〉 evergreen species, broadleaf 〉 coniferous species, shrubs ≈ trees 〉 grasses. For all data pooled, leaf N showed a convex quadratic response to mean annual temperature (MAT), and a negative linear relationship with mean annual precipitation (MAP), but a positive linear relationship with soil nitrogen concentration (Nsoil). These patterns were similar when PFTs were examined individually. Importantly, PFTs, climate and Nsoil, jointly explained 46.1% of the spatial variation in leaf N, of which the independent explanatory powers of PFTs, climate and Nsoil, were 15.6%, 2.3% and 4.7%, respectively. Our findings suggest that leaf N is regulated by climate and Nsoil, mainly via plant species composition. The wide scale empirical relationships developed here are useful for understanding and modeling of the effects of PFTs and environmental factors on leaf N.展开更多
Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surfac...Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.展开更多
An increase in energy demand leads to further exploration, transportation, and utilization of petroleum, which creates severe soil contamination because of recurrent accidents and oil spills. Remediation of these cont...An increase in energy demand leads to further exploration, transportation, and utilization of petroleum, which creates severe soil contamination because of recurrent accidents and oil spills. Remediation of these contaminated soils is challenging. Among many treatment methods practiced for remediation of petroleum-contaminated soils, surfactant-enhanced soil washing has been widely practiced as a preferred treatment option, as it is a fast and environmentally accepted method. In this paper, we review research undertaken on various anionic, nonionic, cationic, biological, and mixed surfactants for the remediation of petroleum hydrocarbon-contaminated soils. Upcoming surfactants like gemini and switchable surfactants are summarized. We assess the challenges and opportunities of in-situ and ex-situ soil washing, the mechanisms of surfactant-enhanced soil washing, and the criteria to follow for surfactant selection.Furthermore, we briefly discuss the operational and environmental factors affecting soil washing efficiency and soil and surfactant properties affecting surfactant adsorption. We also describe the advantages of coupling soil washing with effluent treatment and surfactant reuse challenges and opportunities. Moreover, challenges and possible new directions for future research on surfactant-enhanced soil washing are proposed.展开更多
The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing Sys...The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Im- aging Spectroradiometer (EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission (SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional varia- tional data assimilation system (3DVar) module in the Weather Research and Forecasting (WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal charac- teristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case (Case 2) compared with control case (Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case (Case 3) and the combined case (Case 4). The simulated tem- poral variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated pre- cipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of add lands, as well as research on the formation and stability of climate over semiarid areas.展开更多
文摘Fixed ammonium contents and fixation capacities of some representative cultivated soils collectedfrom 16 provinces of China were studied. Results showed that the contents of fixed ammonium in soilsranged from 35 to 573 mg N kg ̄(-1), with an average of 198 mg N kg ̄(-1). The content of fixed ammoniumcorrelated very significantly with mica content for tropical and subtropical soils, whereas this was not thecase for soils in the temperate zone. At the end of K-exhansting experiment the fixed ammonium contentincreased in most soils studied. However, it decreased in some temperate soils. Generally, fixation of addedNH could not be found either before or after K-exhausting experiment for highly weathered soils, includingtropical soils and soils derived from granite-gneiss or Quaternary red clays in the subtropic zonet while formost soils in the Yangtze River dalta the NH fixation capacity was rather high and increased siguificantlyin the K-exhausted soils.
基金Project(50408020) supported by the National Natural Science Foundation of Chinaproject(05-0686) supported by the Program of New Century Excellent Talents in Universityproject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.
文摘The effect of conservation tillage methods and seeding machines on the soil physical properties, performance of grain drill, wheat yield, and wheat yield components was evaluated. The research was conducted in a split block experimental design with twelve treatments and four replications, and a local wheat variety (Shiraz) was planted in this study. Main plots were tillage methods including: (1) primary tillage using moldboard plow without moldboard; (2) primary tillage with disk harrow; and (3) primary tillage with chisel plow. Subplots were grain drill types including: (1) planting with Taka grain drill without furrower; (2) planting with Taka grain drill having furrower; (3) planting with Hamadan Machine Barzegar grain drill having furrower and runner opener; 4) planting with grain drill having ripple opener. Parameters including mean weight diameter of clods (MWD), soil bulk density, uniformity of seed planting depth, seed distribution uniformity, seed emergence, crop yield, and crop yield components were measured. SAS software was used to analyze the collected data and the method of benefit to cost ratio was used to compare the treatments from the economic point of view. Results indicated that tillage method had no significant effect (P = 0.05) on the measured parameters. Plant per unit area, seed emergence, uniformity of seed planting depth, and MWD were significantly affected by the grain drill type (P 〈 0.05) while, the type of grain drill had no significant effect on the rest of measured parameters. Taka grain drill without furrower had the highest uniformity of planting depth and proper soil MWD, and grain drill with ripple opener had the highest seed emergence and plant per unit area. Interaction between tillage methods and grain drill types affected the soil MWD, seed emergence, and crop yield (P 〈 0.05) in such a way that the combination of primary tillage with disk harrow and planting with grain drill having ripple opener provided the highest crop yield.
文摘The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity;the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northern part of China. However, during the weak years, the summer rainfall belt is largely located over the mid-and lower-reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.
文摘A greenhouse pot experiment was conducted to study the effect of drought induced at different phenological stages on growth, biomass production and yield performance of grain amaranth Amaranthus cruentus G6. After emergence seedlings were exposed to different soil water regimes: constant adequate moisture (W1) and drought (W2) throughout the growing period, drought initiated at crop inflorescence formation (W3), drought condition during pre-inflorescence formation (W4) and treatment W5 where drought condition occurred in the period from the beginning of inflorescence formation to the beginning of flowering. Crop samples were taken at the maturity. The growth and yield performance of amaranth were assessed by measuring root length, stem height and inflorescence length, and by evaluating fresh and dry weight of plant parts, grain yield and harvest index. Drought stress initiated at different phenological stages affected the evaluated morphological parameters, assimilate allocation and grain yield. Drought throughout the growing period resulted in grain and biomass yield reduction for 51% and 50%, respectively. Water deficit during inflorescence formation appears to be critical growing stage influencing grain yield, while soil drying in the vegetative growth stages improve the assimilate allocation to the above-ground biomass and particularly to the grain.
基金supported by the National Basic Research Program of China under Grant 2009CB723904
文摘The performance of a I-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP) during the non-growing period, when the ground surface was covered with bare soil. Comparisons between simulated and observed soil surface energy balance components as well as soil temperatures and water contents were conducted to validate the soil model. Results show that the soil model could produce good simulations of soil surface temperature, net radiation flux, and sensible heat flux against observed values with the RMSE of 1.54℃, 7.71 W m^-2, and 27.79 W m^-2, respectively. The simulated volumetric soil water content is close to the observed values at various depths with the maximal difference between them being 0.03. Simulated latent heat and ground heat fluxes have relatively larger errors in relative to net radiation and sensible heat flux. In conclusion, the soil model has good capacity to simulate the bare soil surface energy balance at the Tongyu cropland station and needs to be further tested in longer period and at more sites in semiarid areas.
文摘Peculiar characteristics of soils of Zarafshan valley are salinity with carbonates. It is recommended to introduce large amount of manure or other organic fertilizers in these soils to improve soil reclamation. But currently there is no possibility to collect so many organic fertilizers in Uzbekistan. That is why other ways of production of organic fertilizers for improving soil fertility were searched. In the experiment, the influence of composts was studied, which prepared from tobacco wastes and manure on agrochemical properties of soils of Zarafshan valley, and production of composts from these industrial wastes, two salted with magnesium carbonates and yield-capacity of com. With the problems that exist in Uzbekistan can be solved at once. These include problems of environmental contamination through wastes and ensuring with organic fertilizers in the irrigated soils. Introduction of composts in the doze of 30 t.ha1 separately and on the background of mineral-NPK (nitrogen, phosphorus and potassium) fertilizers increased the humus content, total NPK and mobile nutritious substances in soil. It is proved that composts, prepared from tobacco wastes with their effect on the yield capacity and quality ofcoru production, can successfully substitute manure. Composts positively influence on the balance of nutritious substances in the system of soil-corn.
基金supported by the National Natural Science Foundation of China(32371737,32130066,31971454,31971534)Natural Science Foundation of Henan Province(232300420004)Xinyang Academy of Ecological Research Open Foundation(2023DBS10).
文摘As the most diverse metazoan taxa,soil nematodes serve a diversity of functions in soil food webs and thus can regulate microbial community composition and affect organic matter decomposition and nutrient turnover rates.Because nematodes depend on water flms to access food resources,drought can negatively affect nematode-microbial food webs,yet the impacts of drought on nematode diversity and abundance and how these changes may infuence food web members and their functions are hardly explored.Here,we coupled research along a drought gradient in arid and semiarid grasslands with a detailed intact plant-soil microcosm experiment to explore the patterns and mechanisms of how drought impacts nematode abundance and carbon footprint,microbial phospholipid fatty acid(PLFA)and heterotrophic soil respiration.Overall,in the feld and the microcosm experiments,we found that nematode abundance,carbon footprint and diversity,microbial PLFA and heterotrophic respiration were reduced under drier conditions.In addition,drought altered nematode and microbial community composition,through reducing the nematode channel ratio and increasing the relative fungivorous nematode abundance and the fungal to bacterial ratio.The soil decomposition channel shifted from a bacterial to a fungal pathway in response to drought,indicating decelerated heterotrophic respiration under drought.These results highlight the important contribution of soil nematodes and their associated microbial food web to soil carbon cycling.Our fndings underscore the need to incorporate key soil fauna into terrestrial ecosystem model evaluation.
基金supported by the National Key Research and Development Program (2010CB833504)the CAS Strategic Priority Research Program (XDA05050602)
文摘We conducted a systematic census of leaf N for 102 plant species at 112 research sites along the North-South Transect of Eastern China (NSTEC) following the same protocol, to explore how plant functional types (PFTs) and environmental factors affect the spatial pattern of leaf N. The results showed that mean leaf N was 17.7 mg g^-1 for all plant species. The highest and lowest leaf N were found in deciduous-broadleaf and evergreen-conifer species, respectively, and the ranking of leaf N from high to low was: deciduous 〉 evergreen species, broadleaf 〉 coniferous species, shrubs ≈ trees 〉 grasses. For all data pooled, leaf N showed a convex quadratic response to mean annual temperature (MAT), and a negative linear relationship with mean annual precipitation (MAP), but a positive linear relationship with soil nitrogen concentration (Nsoil). These patterns were similar when PFTs were examined individually. Importantly, PFTs, climate and Nsoil, jointly explained 46.1% of the spatial variation in leaf N, of which the independent explanatory powers of PFTs, climate and Nsoil, were 15.6%, 2.3% and 4.7%, respectively. Our findings suggest that leaf N is regulated by climate and Nsoil, mainly via plant species composition. The wide scale empirical relationships developed here are useful for understanding and modeling of the effects of PFTs and environmental factors on leaf N.
基金supported by the National Natural Science Foundation of China (Grant No.40830597)the Public Welfare Research Project of China (Grant No.GYHY200806021)
文摘Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.
基金The financial supports from the National Key Research and Development Program of China (Nos. 2016YFC0400501 and 2016YFC0400502)the Fundamental Research Funds for Central Universities of China (No. 2232018D3-43)the National Natural Science Foundation of China (No. 21277023)
文摘An increase in energy demand leads to further exploration, transportation, and utilization of petroleum, which creates severe soil contamination because of recurrent accidents and oil spills. Remediation of these contaminated soils is challenging. Among many treatment methods practiced for remediation of petroleum-contaminated soils, surfactant-enhanced soil washing has been widely practiced as a preferred treatment option, as it is a fast and environmentally accepted method. In this paper, we review research undertaken on various anionic, nonionic, cationic, biological, and mixed surfactants for the remediation of petroleum hydrocarbon-contaminated soils. Upcoming surfactants like gemini and switchable surfactants are summarized. We assess the challenges and opportunities of in-situ and ex-situ soil washing, the mechanisms of surfactant-enhanced soil washing, and the criteria to follow for surfactant selection.Furthermore, we briefly discuss the operational and environmental factors affecting soil washing efficiency and soil and surfactant properties affecting surfactant adsorption. We also describe the advantages of coupling soil washing with effluent treatment and surfactant reuse challenges and opportunities. Moreover, challenges and possible new directions for future research on surfactant-enhanced soil washing are proposed.
基金supported by the National Basic Research Program of China(Grant No.2010CB950504)the National High-tech R&D Program of China(Grant No.2013AA122003)the open funds of the Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences(Grant No.LPCC201101)
文摘The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Im- aging Spectroradiometer (EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission (SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional varia- tional data assimilation system (3DVar) module in the Weather Research and Forecasting (WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal charac- teristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case (Case 2) compared with control case (Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case (Case 3) and the combined case (Case 4). The simulated tem- poral variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated pre- cipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of add lands, as well as research on the formation and stability of climate over semiarid areas.