Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The ...Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).展开更多
Made teas and typical tea-grown soils in Sichuan and Chongqing were collected to investigate soil nutrients, related soil properties and tea quality. The tea-grown soils in Sichuan and Chongqing are distributed mainly...Made teas and typical tea-grown soils in Sichuan and Chongqing were collected to investigate soil nutrients, related soil properties and tea quality. The tea-grown soils in Sichuan and Chongqing are distributed mainly in mountainous areas. The high annual precipitation (over 1100 mm), precipitous soil slopes, low cohesion among soil particles and high soil porosity suggested that intensive erosion and leaching might occur in these soils. Moreover, they were very acidic and poor in mineral nutrients such as N, P, K, Ca and Mg except S. The average content of total S was 20.40 g kg-1, much higher than that of organic matter in these soils, revealing that S in the tea-grown soils existed mainly in inorganic forms and very little in organic forms. Water-extractable S accounted for only a small amount of total S, which showed that most parts of sulfur in these soils were insoluble in W8ter. K and S varied greatly in made teas. The concentrations of N and P, however, varied little in these teas even though they differentiated significantly in the tea-grown soils. The high concentration of nitrogen in made teas could result in the high free amino acids and low polyphenol of teas. Significantly positive correlation was established between potassium and polyphenol in made teas. Teas with high ratio of phenol to free amino acids were usually good in taste and appearance.展开更多
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r...A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.展开更多
A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil p...A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.展开更多
Areas of planting sugarcane are located in subtropical and tropical parts of Guangxi. These areas are characterized by high temperature, heavy rainfall and nutrients leaching. It results in strong decomposition of soi...Areas of planting sugarcane are located in subtropical and tropical parts of Guangxi. These areas are characterized by high temperature, heavy rainfall and nutrients leaching. It results in strong decomposition of soil mineral and a low cation exchange capacity (CEC), low organic matter, and low phosphorus (P), potassium (K) and sulfur (S) in soils. In about 30% of the soils in the planting sugarcane regions the total sulfur and the plant-available sulfur are under 150 mg/kg and 12 mg/kg, respectively. The sulfur nutrition is usually supplied insufficiently for sugarcane growth. The total sulfur of and available sulfur are under the medium level in nearly 50% of the soils in the planting sugarcane regions. Therefore, with the improvement of production of the sugarcane, the sulfur soil nutrition will influence and limit sugarcane yield. After application of sulfur fertilizer, available stem, single stem weight increased 5.77%-9.43% of sugarcane yield than without the treatment. It still can improve the cane sugar and fibre content. And the sugarcane can obtain better economic benefits to use the sulfur phosphorus ammonium; it is 18.2-20.23 with output/input (VCR) to use the sulfur fertilizer. Amount of sugarcane absorption sulfur reaches 44.1-67 kg/ha. The treatment with no sulfur fertilizer annual sulfur nutrient lose will be 23.67 kg/ha because sugarcane yield uptake from the field.展开更多
A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lo...A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lolium multiflorum) on Orthic Allophanic Soil,following the application of three rates of triple superphosphate(TSP)(0,50,and 100 mg·kg^-1P) under a glasshouse condition.The application of P fertilizer enhanced P availability in the rhizospheric of radiata seedlings and the bulk soils in a P-deficient site.P availability in the rhizospheric soils of ryegrass and broom,grown in association with radiata,were also increased by the presence of radiata roots.P concentrations in new shoot needles,old shoot needles,stem and roots of radiata pine increased with increase rates of TSP application,but the effects of ryegrass and broom on P nutrition of radiata seedlings depended on the soil P status.In the absence of P fertilizer addition(control treatment),P concentrations in new shoot needles,old shoot needles,stem,and roots of radiata grown in association with broom were higher than those with ryegrass,whereas,when P fertilizer was added(50 and 100 mg·kg^-1) the P concentration was lower.This is probably related to the growth of broom that may have removed much of the plant-available P in the soil as indicated by the consistently lower Bray-2 P concentration in the rhizosphere soil of radiata in association with broom than that in the rhizosphere soil of radiata in association with grass at the two high P rates.Furthermore,in the high P fertile soil(application rate of 100 mg·kg^-1),the dry matter yield of radiata was lower when it was grown with broom than with ryegrass.This result suggests that in moderate to high P fertile soils,P.radiata seedlings grow better with ryegrass than with broom,because broom grows vigorously in high P fertile soil and competes with P.radiata for P and perhaps for other nutrients as well.展开更多
Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts o...Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.展开更多
Interaction between soil water and nutrients plays an important role in sustainable crop management in semi-arid environments.On the basis of a field experiment conducted from 2000 to 2003,this study examined the coup...Interaction between soil water and nutrients plays an important role in sustainable crop management in semi-arid environments.On the basis of a field experiment conducted from 2000 to 2003,this study examined the coupled effects of irrigation and fertilizers on maize growth and yield in a semi-arid region of northeastern China.In terms of plant productivity,nitrogen fertilizer had the most significant effect followed by irrigation and phosphate levels.The combined application of nutrients and irrigation exerted a synergistic effect on the grain yield of maize plants.Regression analysis indicated that optimal levels of nitrogen and phosphate,in addition to adequate irrigation,could greatly improve the efficiency of grain production.Similarly,optimization of soil nutrient availability substantially increased water use efficiency.These suggested that for the most efficient and sustainable crop production,irrigation and nutrient management should be based on a quantitative understanding of water/nutrients interaction,particularly in semi-arid and arid regions.展开更多
Understanding how nutrient absorption processes in plants are related to arbuscular mycorrhizal(AM)association is critical for predicting the effects of AM symbiosis on elemental cycling for plants. Both mulberry(Moru...Understanding how nutrient absorption processes in plants are related to arbuscular mycorrhizal(AM)association is critical for predicting the effects of AM symbiosis on elemental cycling for plants. Both mulberry(Morus alba) and Chinese prickly ash(Zanthoxylum bungeanum) are AM-associated plants, widely distributed in southwest China. It was hypothesized that if the nutrient absorption processes were efficiently associated with AM symbiosis in both mulberry and Chinese prickly ash, foliar nutrient concentrations—especially calcium(Ca)—would be primarily determined by the soil conditions in different regions. To investigate this, AM colonization levels of soils, nutrient levels in soils and leaves, and δ^(13)C values of leaves were analyzed for mulberry and Chinese prickly ash.In this study, spore density in soils with low p H was higher than that in soils with high p H. The average concentrations of sugar delivered to roots in both mulberry and Chinese prickly ash in soil with relatively low p H and soil extractable cations were higher than those in other areas.The values of foliar δ^(13)C in both mulberry and Chinese prickly ash in low soil-pH and soil extractable cations were lower than those in contrast areas, indicating that water availability was impacted by soil characteristics. The efficiency in AM-mediated processes might play an important role in translocation between soil nutrients and plant tissue.The results suggest uptake and translocation of nutrients,especially Ca, in AM-associated plants may be affected by an efficiency of AM-mediated processes. Since Sr does not appear to be similarly affected, expressing Ca and other nutrient concentrations relative to Sr could be used to evaluate whether the uptake and translocation of Ca and other nutrients are affected by AM-mediated processes.展开更多
The Cape fynbos is characterised by highly leached, sandy, acidic soils with very low nutrient concentrations. Plant-available P levels range from 0.4 μg P g-1 to 3.7 μg P g-I soil, and 1-2 mg N gl soil. Despite the...The Cape fynbos is characterised by highly leached, sandy, acidic soils with very low nutrient concentrations. Plant-available P levels range from 0.4 μg P g-1 to 3.7 μg P g-I soil, and 1-2 mg N gl soil. Despite these low nutrient concentrations, the fynbos is home to 9,030 vascular plant species with 68.7% endemicity. How native plant species survive such low levels of available P is intriguing, and indeed the subject of this review. In the fynbos soils, P is easily precipitated with cations such as Fe and Al, forming AI-P and Fe-P in acidic soils, or Ca-P in neutral-to-alkaline soils. The mechanisms for promoting P availability and enhancing P nutrition include the development of mycorrhizal symbiosis (with 80%-90% of higher plants, e.g., Cyclopia, Aspalathus, Psoralea and Leucadendron etc.) which exhibits 3-5 times much greater P acquisition than non-mycorrhizal roots. Formation of cluster roots by the Leguminosae (Fabaceae) and their exudation of Kreb cycle intermediates (organic acids) for solubilizing P, secretion of root exudate compounds (organic acids, phenolics, amino acids, etc.) that mobilize P. The synthesis and release of acid and alkaline phosphatase enzyme that catalyze the cleavage of mineral P from organic phosphate esters in acidic and alkaline soils, and the development of deep tap roots as well as massive secondary roots within the uppermost 15 cm of soil for capturing water and nutrients. Some fynbos legumes employ all these adaptive mechanisms for enhancing P nutrition and plant growth. Aspalathus and Cyclopia species typically form mycorrhizal and rhizobial symbiosis for improving P and N nutrition, produce cluster roots and acid phosphatases for increasing P supply, and release root exudates that enhance P solubilisation and uptake.展开更多
In the mid-eastern China,there are few or no lakes which are in the absence of anthropogenic disturbances,or their sediments remain undisturbed.As a result,the reference lakes distribution and paleolimnological recons...In the mid-eastern China,there are few or no lakes which are in the absence of anthropogenic disturbances,or their sediments remain undisturbed.As a result,the reference lakes distribution and paleolimnological reconstruction approaches usually are inappropriate to estimate lake reference conditions for nutrients.This yields the necessity of using the extrapolation methods to estimate the lake reference conditions for nutrients within those regions.The lake reference conditions for nutrients could be inferred inversely from the law of mass conservation,current lake nutrient concentration,and the loadings from watershed.Considering the scarcity of hydrological and water quality data associated with lakes and watersheds in China,as well as the low requirement of the watershed nutrient loadings models for these data,the soil conservation service(SCS) distributed hydrological model and the universal soil loss equation(USLE) were applied.The SCS model simulates the runoff process of the watershed,thereby calculating dissolved nutrients annually.The USLE estimates the soil erosion and particulate nutrients annually in a watershed.Then,with the loadings from atmospheric deposition and point source,the previous annual average nutrient concentrations could be acquired given the current nutrient concentrations in a lake.Therefore,the nutrient reference conditions minimally impacted by human activities could be estimated.Based on the proposed model,the reference conditions for total nitrogen and total phosphorus of Chaohu Lake,Anhui Province,China are 0.031 mg/L and 0.640 mg/L,respectively.The proposed reference conditions estimation model is of clear physical concept,and less data required.Thus,the proposed approach can be used in other lakes with similar circumstances.展开更多
The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer c...The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.展开更多
Eleven nutrition elements and 5 quality elements of garlic (Allium sativum L.) in different Se, S level and their interaction pot experiments were analyzed by atom absorbing spectrophotometer, titration and fixing s...Eleven nutrition elements and 5 quality elements of garlic (Allium sativum L.) in different Se, S level and their interaction pot experiments were analyzed by atom absorbing spectrophotometer, titration and fixing sulfur method. The mineral elements were analyzed by the Principal Component Analysis and the Factor Analysis on the SPSS 10.0 and three main factors were picked. The results showed that Se, S and Se-S cooperated application enhanced the garlic nutrition quality by increasing mineral nutrition. The garlic Vc was the highest after using higher Se compared middle S level (S 20 mg/kg soil + Se 40 mg/kg soil). Lower Se level compared middle S level (S 40 mg/kg soil + Se 20 mg/kg soil) get the highest garlic abio-Se in all treatments. The garlic organic Se content was the highest after using higher Se compared middle S (S 40 mg/kg soil + Se 40 mg/kg soil). The treatment lower S compared lower Se level get the highest garlic allicin in all treatment. It showed that the fresh eating factor was affected by the element Se. The flavor factor and health care factor were affected by both Se and S.展开更多
This study was carried out under Cumra-Konya conditions, in 2007, for the determination of consumption of the plant nutrients from soil by black cumin plants. The soil samples were taken before sowing and after harves...This study was carried out under Cumra-Konya conditions, in 2007, for the determination of consumption of the plant nutrients from soil by black cumin plants. The soil samples were taken before sowing and after harvest from the field that was sown black cumin and determined the rate of major and minor plant nutrients. For this reason, soil samples were taken from the depth of 30 cm as 2-3 kg and analyzed. The harvested black cumin yielded approximately 1,350 kg/ha seed. The analyses made in soil samples were pH, salinity, organic matter and lime, P, K, Ca, Mg, Na, Cu, Fe, Zn and Mn. According to the results, the parcel soil has not salt problem, and is little alkaline, more limy and little humic, good for phosphorus and very rich with respect potassium before sowing. At the same time, the parcel soil samples after harvest were little saline, little alkaline, more limy, poor humic, good for phosphorus and very rich with respect potassium.展开更多
Farmers may not be conscious for their farmland's nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportio...Farmers may not be conscious for their farmland's nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of "Yebrage" using neutron activation analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world's increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.展开更多
The data of field studies about mineral nutrient content in the biomass components of young birch stands (9-15 years old) in different forest growing conditions and soil types have been analyzed. In forest growing c...The data of field studies about mineral nutrient content in the biomass components of young birch stands (9-15 years old) in different forest growing conditions and soil types have been analyzed. In forest growing conditions on fertile soils (ASG, TSC and SP) the total amount of biomass produced by young birch stands divides into fractions as follows: stem wood 51.8%-59.5%; branch wood 9.8%-12.4%; foliage 5.7%-6.8%; stump wood and roots 25%-30%. In forest types on lean soils (TP) the same indices are 32.3%-41.8%, 18.2%-24.2%, 13.2%-16.1% and 26.8%-27.4%, respectively. The stand performance closely correlates with the basic nutrient (P, N, K, C and Mg) availability in forest soils. In lean typicpodzol soils (TP) the content of mineral nutrients is no higher than 20%-48% of that in more fertile soils (ASG, TSC and SP). In young birch stands the take-up of mineral nutrients from 0-40 cm soil layer for developing the above-ground biomass makes a fairly small proportion of the total: up to 4.8%-6.2% for P; 4.9%-12.2% for N; 1.1%-4.1% for K; 11.6% for Ca; 0.8%-7.7% for Mg; in leaner soils the same indices are P 0.1%-0.4%, N 1%-1.5%, K 0.2%-0.6%, Ca 0.1%-0.9%, Mg 0.1%-0.8%, respectively. The analyses of pest damages in young birch stands confirm a hypothesis that the degree of pest damage depends on the stand vitality as described by the site index.展开更多
Mineral nutrients are fundamentally metals and other inorganic compounds. The life cycle of these mineral nutrients begins in soil, their primary source. Soil provides minerals to plants and through the plants the min...Mineral nutrients are fundamentally metals and other inorganic compounds. The life cycle of these mineral nutrients begins in soil, their primary source. Soil provides minerals to plants and through the plants the minerals go to animals and humans; animal products are also the source of mineral nutrients for humans. Plant foods contain almost all of the mineral nutrients established as essential for human nutrition. They provide much of our skeletal structure, e.g., bones and teeth. They are critical to countless body processes by serving as essential co-factors for a number of enzymes. Humans can not utilize most foods without critical minerals and enzymes responsible for digestion and absorption. Though mineral nutrients are essential nutrients, the body requires them in small, precise amounts. We require them in the form found in crops and they can be classified into three different categories: major, secondary, and micro or trace minerals. This classification is based upon their requirement rather than on their relative importance. Major minerals such as potassium (K) and phosphorus (P) are required in amounts of up to 10 g d-1. The daily requirement of secondary and micro minerals ranges from 400 to 1 500 mg d-1 and 45 ~tg d-1 to 11 mg d-1, respectively. To protect humans from mineral nutrient deficiencies, the key is to consume a variety of foods in modest quantities, such as different whole grains, low fat dairy, and different meats, vegetables and fruits. For insurance purposes, a supplement containing various mineral nutrients can be taken daily.展开更多
Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feas...Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feasibility of using phosphate rock and dolostone as fertilizers or acid-neutralizing agents for application in tropical acid soils. The dissolution rates of different particle-size fractions(0.063–0.25, 0.25–0.5, and 0.5–2 mm) of both rocks were studied by citric acid solution at p H 4 and 2 and water, with extraction times of 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The results showed that the dissolution of both rocks depended on the particle size,leaching solution, and extraction time. The dissolution rate of rock-forming minerals increased as the specific surface area increased,corresponding to a decrease in particle size. In all cases, the release kinetics was characterized by two phases: 1) a first stage of rapid release that lasted 24 h and would ensure short-term nutrient release, and 2) a second stage of slow release after 24 h, representing the long-term nutrient release efficiency. Both rocks were suitable as slow-release fertilizers in strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium particle-size fractions should be used to ensure high nutrient-release efficiency. Much work could remain to determine the overall impact of considerable amounts of fresh rocks in soils.展开更多
Anti-adhesion is a common phenomenon in living organisms, which is the evolution results to adapt their living surroundings. From the perspective of surface type, there are two typical anti-adhesion mechanisms: micro...Anti-adhesion is a common phenomenon in living organisms, which is the evolution results to adapt their living surroundings. From the perspective of surface type, there are two typical anti-adhesion mechanisms: micro- and nano- surface structures and liquid-covered surface. Many living organisms possess one or two of these anti-adhesion surfac- es in order to achieve superior anti-adhesion, for example, soil animals like mole cricket and earthworm [1]. Carnivo- rous pitcher plant Nepenthes can capture and digest insects to meet the fundamental nutrients needs. When the insects crawl on its slippery peristome, they could easy-sliding into the picher, known as "aquaplaning". Wong et al. [2] at Harvard University has designed and fabricated slippery surface mimicking this slippery mechanism in Nepenthes, the results of which was published in Nature. However, questions remain about the mechanism underlying its func- tion, especially for the liquid film formation mechanism.展开更多
基金The project was supported by Japanese Society for Promotion of Sciences (15P03118).
文摘Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).
基金Project supported by the Dept. of Agricultural Science, Potassium Commercial Association, Azote, France and the Municipal Scienc
文摘Made teas and typical tea-grown soils in Sichuan and Chongqing were collected to investigate soil nutrients, related soil properties and tea quality. The tea-grown soils in Sichuan and Chongqing are distributed mainly in mountainous areas. The high annual precipitation (over 1100 mm), precipitous soil slopes, low cohesion among soil particles and high soil porosity suggested that intensive erosion and leaching might occur in these soils. Moreover, they were very acidic and poor in mineral nutrients such as N, P, K, Ca and Mg except S. The average content of total S was 20.40 g kg-1, much higher than that of organic matter in these soils, revealing that S in the tea-grown soils existed mainly in inorganic forms and very little in organic forms. Water-extractable S accounted for only a small amount of total S, which showed that most parts of sulfur in these soils were insoluble in W8ter. K and S varied greatly in made teas. The concentrations of N and P, however, varied little in these teas even though they differentiated significantly in the tea-grown soils. The high concentration of nitrogen in made teas could result in the high free amino acids and low polyphenol of teas. Significantly positive correlation was established between potassium and polyphenol in made teas. Teas with high ratio of phenol to free amino acids were usually good in taste and appearance.
基金1Project supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No. KZCX2-413) andthe National High Technology Research and Development Program of China (863 Program) (No. 2002AA601012).
文摘A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.
基金Project(No.30170770)supported by the National Natural Science Foundation of China.Corresponding author.Tel:0599-8504990Fax:0599-8516481E-mail:ffcyys@public.npptt.fj.cn.
文摘A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.
文摘Areas of planting sugarcane are located in subtropical and tropical parts of Guangxi. These areas are characterized by high temperature, heavy rainfall and nutrients leaching. It results in strong decomposition of soil mineral and a low cation exchange capacity (CEC), low organic matter, and low phosphorus (P), potassium (K) and sulfur (S) in soils. In about 30% of the soils in the planting sugarcane regions the total sulfur and the plant-available sulfur are under 150 mg/kg and 12 mg/kg, respectively. The sulfur nutrition is usually supplied insufficiently for sugarcane growth. The total sulfur of and available sulfur are under the medium level in nearly 50% of the soils in the planting sugarcane regions. Therefore, with the improvement of production of the sugarcane, the sulfur soil nutrition will influence and limit sugarcane yield. After application of sulfur fertilizer, available stem, single stem weight increased 5.77%-9.43% of sugarcane yield than without the treatment. It still can improve the cane sugar and fibre content. And the sugarcane can obtain better economic benefits to use the sulfur phosphorus ammonium; it is 18.2-20.23 with output/input (VCR) to use the sulfur fertilizer. Amount of sugarcane absorption sulfur reaches 44.1-67 kg/ha. The treatment with no sulfur fertilizer annual sulfur nutrient lose will be 23.67 kg/ha because sugarcane yield uptake from the field.
基金supported by Massey University and the Centre for Sustainable Forest Management at Forest Research Institute, New Zealand
文摘A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lolium multiflorum) on Orthic Allophanic Soil,following the application of three rates of triple superphosphate(TSP)(0,50,and 100 mg·kg^-1P) under a glasshouse condition.The application of P fertilizer enhanced P availability in the rhizospheric of radiata seedlings and the bulk soils in a P-deficient site.P availability in the rhizospheric soils of ryegrass and broom,grown in association with radiata,were also increased by the presence of radiata roots.P concentrations in new shoot needles,old shoot needles,stem and roots of radiata pine increased with increase rates of TSP application,but the effects of ryegrass and broom on P nutrition of radiata seedlings depended on the soil P status.In the absence of P fertilizer addition(control treatment),P concentrations in new shoot needles,old shoot needles,stem,and roots of radiata grown in association with broom were higher than those with ryegrass,whereas,when P fertilizer was added(50 and 100 mg·kg^-1) the P concentration was lower.This is probably related to the growth of broom that may have removed much of the plant-available P in the soil as indicated by the consistently lower Bray-2 P concentration in the rhizosphere soil of radiata in association with broom than that in the rhizosphere soil of radiata in association with grass at the two high P rates.Furthermore,in the high P fertile soil(application rate of 100 mg·kg^-1),the dry matter yield of radiata was lower when it was grown with broom than with ryegrass.This result suggests that in moderate to high P fertile soils,P.radiata seedlings grow better with ryegrass than with broom,because broom grows vigorously in high P fertile soil and competes with P.radiata for P and perhaps for other nutrients as well.
基金the National Natural Science Foundation of China (Grant Nos.41601296,41571278 and 41771321)China Postdoctoral Science Foundation (Grant No.2016M592720)+1 种基金Applied Basic Research Foundation of Yunnan Province (Grant No.2016FD011)Sichuan Science and Technology Program (2018SZ0132)
文摘Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.
基金supported by the National High Technology Research and Development Program (863 Program) of China(No.2002AA2Z4321-02)
文摘Interaction between soil water and nutrients plays an important role in sustainable crop management in semi-arid environments.On the basis of a field experiment conducted from 2000 to 2003,this study examined the coupled effects of irrigation and fertilizers on maize growth and yield in a semi-arid region of northeastern China.In terms of plant productivity,nitrogen fertilizer had the most significant effect followed by irrigation and phosphate levels.The combined application of nutrients and irrigation exerted a synergistic effect on the grain yield of maize plants.Regression analysis indicated that optimal levels of nitrogen and phosphate,in addition to adequate irrigation,could greatly improve the efficiency of grain production.Similarly,optimization of soil nutrient availability substantially increased water use efficiency.These suggested that for the most efficient and sustainable crop production,irrigation and nutrient management should be based on a quantitative understanding of water/nutrients interaction,particularly in semi-arid and arid regions.
基金financially supported by the National Natural Science Foundation of China (Grant no.4121004)water project of MEP (2012ZX07503003001)
文摘Understanding how nutrient absorption processes in plants are related to arbuscular mycorrhizal(AM)association is critical for predicting the effects of AM symbiosis on elemental cycling for plants. Both mulberry(Morus alba) and Chinese prickly ash(Zanthoxylum bungeanum) are AM-associated plants, widely distributed in southwest China. It was hypothesized that if the nutrient absorption processes were efficiently associated with AM symbiosis in both mulberry and Chinese prickly ash, foliar nutrient concentrations—especially calcium(Ca)—would be primarily determined by the soil conditions in different regions. To investigate this, AM colonization levels of soils, nutrient levels in soils and leaves, and δ^(13)C values of leaves were analyzed for mulberry and Chinese prickly ash.In this study, spore density in soils with low p H was higher than that in soils with high p H. The average concentrations of sugar delivered to roots in both mulberry and Chinese prickly ash in soil with relatively low p H and soil extractable cations were higher than those in other areas.The values of foliar δ^(13)C in both mulberry and Chinese prickly ash in low soil-pH and soil extractable cations were lower than those in contrast areas, indicating that water availability was impacted by soil characteristics. The efficiency in AM-mediated processes might play an important role in translocation between soil nutrients and plant tissue.The results suggest uptake and translocation of nutrients,especially Ca, in AM-associated plants may be affected by an efficiency of AM-mediated processes. Since Sr does not appear to be similarly affected, expressing Ca and other nutrient concentrations relative to Sr could be used to evaluate whether the uptake and translocation of Ca and other nutrients are affected by AM-mediated processes.
文摘The Cape fynbos is characterised by highly leached, sandy, acidic soils with very low nutrient concentrations. Plant-available P levels range from 0.4 μg P g-1 to 3.7 μg P g-I soil, and 1-2 mg N gl soil. Despite these low nutrient concentrations, the fynbos is home to 9,030 vascular plant species with 68.7% endemicity. How native plant species survive such low levels of available P is intriguing, and indeed the subject of this review. In the fynbos soils, P is easily precipitated with cations such as Fe and Al, forming AI-P and Fe-P in acidic soils, or Ca-P in neutral-to-alkaline soils. The mechanisms for promoting P availability and enhancing P nutrition include the development of mycorrhizal symbiosis (with 80%-90% of higher plants, e.g., Cyclopia, Aspalathus, Psoralea and Leucadendron etc.) which exhibits 3-5 times much greater P acquisition than non-mycorrhizal roots. Formation of cluster roots by the Leguminosae (Fabaceae) and their exudation of Kreb cycle intermediates (organic acids) for solubilizing P, secretion of root exudate compounds (organic acids, phenolics, amino acids, etc.) that mobilize P. The synthesis and release of acid and alkaline phosphatase enzyme that catalyze the cleavage of mineral P from organic phosphate esters in acidic and alkaline soils, and the development of deep tap roots as well as massive secondary roots within the uppermost 15 cm of soil for capturing water and nutrients. Some fynbos legumes employ all these adaptive mechanisms for enhancing P nutrition and plant growth. Aspalathus and Cyclopia species typically form mycorrhizal and rhizobial symbiosis for improving P and N nutrition, produce cluster roots and acid phosphatases for increasing P supply, and release root exudates that enhance P solubilisation and uptake.
基金Under the auspices of the Major Special Technological Program of Water Pollution Control and Management (No. 2009ZX07106-001)National Natural Science Foundation of China (No. 51079037,51109052)
文摘In the mid-eastern China,there are few or no lakes which are in the absence of anthropogenic disturbances,or their sediments remain undisturbed.As a result,the reference lakes distribution and paleolimnological reconstruction approaches usually are inappropriate to estimate lake reference conditions for nutrients.This yields the necessity of using the extrapolation methods to estimate the lake reference conditions for nutrients within those regions.The lake reference conditions for nutrients could be inferred inversely from the law of mass conservation,current lake nutrient concentration,and the loadings from watershed.Considering the scarcity of hydrological and water quality data associated with lakes and watersheds in China,as well as the low requirement of the watershed nutrient loadings models for these data,the soil conservation service(SCS) distributed hydrological model and the universal soil loss equation(USLE) were applied.The SCS model simulates the runoff process of the watershed,thereby calculating dissolved nutrients annually.The USLE estimates the soil erosion and particulate nutrients annually in a watershed.Then,with the loadings from atmospheric deposition and point source,the previous annual average nutrient concentrations could be acquired given the current nutrient concentrations in a lake.Therefore,the nutrient reference conditions minimally impacted by human activities could be estimated.Based on the proposed model,the reference conditions for total nitrogen and total phosphorus of Chaohu Lake,Anhui Province,China are 0.031 mg/L and 0.640 mg/L,respectively.The proposed reference conditions estimation model is of clear physical concept,and less data required.Thus,the proposed approach can be used in other lakes with similar circumstances.
文摘The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.
文摘Eleven nutrition elements and 5 quality elements of garlic (Allium sativum L.) in different Se, S level and their interaction pot experiments were analyzed by atom absorbing spectrophotometer, titration and fixing sulfur method. The mineral elements were analyzed by the Principal Component Analysis and the Factor Analysis on the SPSS 10.0 and three main factors were picked. The results showed that Se, S and Se-S cooperated application enhanced the garlic nutrition quality by increasing mineral nutrition. The garlic Vc was the highest after using higher Se compared middle S level (S 20 mg/kg soil + Se 40 mg/kg soil). Lower Se level compared middle S level (S 40 mg/kg soil + Se 20 mg/kg soil) get the highest garlic abio-Se in all treatments. The garlic organic Se content was the highest after using higher Se compared middle S (S 40 mg/kg soil + Se 40 mg/kg soil). The treatment lower S compared lower Se level get the highest garlic allicin in all treatment. It showed that the fresh eating factor was affected by the element Se. The flavor factor and health care factor were affected by both Se and S.
文摘This study was carried out under Cumra-Konya conditions, in 2007, for the determination of consumption of the plant nutrients from soil by black cumin plants. The soil samples were taken before sowing and after harvest from the field that was sown black cumin and determined the rate of major and minor plant nutrients. For this reason, soil samples were taken from the depth of 30 cm as 2-3 kg and analyzed. The harvested black cumin yielded approximately 1,350 kg/ha seed. The analyses made in soil samples were pH, salinity, organic matter and lime, P, K, Ca, Mg, Na, Cu, Fe, Zn and Mn. According to the results, the parcel soil has not salt problem, and is little alkaline, more limy and little humic, good for phosphorus and very rich with respect potassium before sowing. At the same time, the parcel soil samples after harvest were little saline, little alkaline, more limy, poor humic, good for phosphorus and very rich with respect potassium.
文摘Farmers may not be conscious for their farmland's nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of "Yebrage" using neutron activation analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world's increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.
文摘The data of field studies about mineral nutrient content in the biomass components of young birch stands (9-15 years old) in different forest growing conditions and soil types have been analyzed. In forest growing conditions on fertile soils (ASG, TSC and SP) the total amount of biomass produced by young birch stands divides into fractions as follows: stem wood 51.8%-59.5%; branch wood 9.8%-12.4%; foliage 5.7%-6.8%; stump wood and roots 25%-30%. In forest types on lean soils (TP) the same indices are 32.3%-41.8%, 18.2%-24.2%, 13.2%-16.1% and 26.8%-27.4%, respectively. The stand performance closely correlates with the basic nutrient (P, N, K, C and Mg) availability in forest soils. In lean typicpodzol soils (TP) the content of mineral nutrients is no higher than 20%-48% of that in more fertile soils (ASG, TSC and SP). In young birch stands the take-up of mineral nutrients from 0-40 cm soil layer for developing the above-ground biomass makes a fairly small proportion of the total: up to 4.8%-6.2% for P; 4.9%-12.2% for N; 1.1%-4.1% for K; 11.6% for Ca; 0.8%-7.7% for Mg; in leaner soils the same indices are P 0.1%-0.4%, N 1%-1.5%, K 0.2%-0.6%, Ca 0.1%-0.9%, Mg 0.1%-0.8%, respectively. The analyses of pest damages in young birch stands confirm a hypothesis that the degree of pest damage depends on the stand vitality as described by the site index.
文摘Mineral nutrients are fundamentally metals and other inorganic compounds. The life cycle of these mineral nutrients begins in soil, their primary source. Soil provides minerals to plants and through the plants the minerals go to animals and humans; animal products are also the source of mineral nutrients for humans. Plant foods contain almost all of the mineral nutrients established as essential for human nutrition. They provide much of our skeletal structure, e.g., bones and teeth. They are critical to countless body processes by serving as essential co-factors for a number of enzymes. Humans can not utilize most foods without critical minerals and enzymes responsible for digestion and absorption. Though mineral nutrients are essential nutrients, the body requires them in small, precise amounts. We require them in the form found in crops and they can be classified into three different categories: major, secondary, and micro or trace minerals. This classification is based upon their requirement rather than on their relative importance. Major minerals such as potassium (K) and phosphorus (P) are required in amounts of up to 10 g d-1. The daily requirement of secondary and micro minerals ranges from 400 to 1 500 mg d-1 and 45 ~tg d-1 to 11 mg d-1, respectively. To protect humans from mineral nutrient deficiencies, the key is to consume a variety of foods in modest quantities, such as different whole grains, low fat dairy, and different meats, vegetables and fruits. For insurance purposes, a supplement containing various mineral nutrients can be taken daily.
基金supported by the "Applied Research and Multi-sectorial Program" (FIAM) (No. 5.2.1) granted by the Italian Cooperation and Development Agency (ICDA) to the Universidade Eduardo Mondlanethe Polytechnic University of Marche, Italy for the PhD scholarship provided to the first author as well as research funding for this work
文摘Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feasibility of using phosphate rock and dolostone as fertilizers or acid-neutralizing agents for application in tropical acid soils. The dissolution rates of different particle-size fractions(0.063–0.25, 0.25–0.5, and 0.5–2 mm) of both rocks were studied by citric acid solution at p H 4 and 2 and water, with extraction times of 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The results showed that the dissolution of both rocks depended on the particle size,leaching solution, and extraction time. The dissolution rate of rock-forming minerals increased as the specific surface area increased,corresponding to a decrease in particle size. In all cases, the release kinetics was characterized by two phases: 1) a first stage of rapid release that lasted 24 h and would ensure short-term nutrient release, and 2) a second stage of slow release after 24 h, representing the long-term nutrient release efficiency. Both rocks were suitable as slow-release fertilizers in strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium particle-size fractions should be used to ensure high nutrient-release efficiency. Much work could remain to determine the overall impact of considerable amounts of fresh rocks in soils.
文摘Anti-adhesion is a common phenomenon in living organisms, which is the evolution results to adapt their living surroundings. From the perspective of surface type, there are two typical anti-adhesion mechanisms: micro- and nano- surface structures and liquid-covered surface. Many living organisms possess one or two of these anti-adhesion surfac- es in order to achieve superior anti-adhesion, for example, soil animals like mole cricket and earthworm [1]. Carnivo- rous pitcher plant Nepenthes can capture and digest insects to meet the fundamental nutrients needs. When the insects crawl on its slippery peristome, they could easy-sliding into the picher, known as "aquaplaning". Wong et al. [2] at Harvard University has designed and fabricated slippery surface mimicking this slippery mechanism in Nepenthes, the results of which was published in Nature. However, questions remain about the mechanism underlying its func- tion, especially for the liquid film formation mechanism.