A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey...A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.展开更多
Decomposition experiments of 14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively. The amount of res...Decomposition experiments of 14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively. The amount of residual 14C in, or 14CO2 evolved from, the soils at intervals after the beginning of decomposition were measured and the distribution of native and labelled C between particle size fractions isolated from these soils was edtermined. Results showed that contents of both labelled (14C) and non-labelled (12C) carbon decreased with increasing particle size. The enrichment factor for 14C was higher than that for 12C in the clay fraction, the reverse being true for the silt enrichment factors. The effect of soil texture on the decomposition of plant material could not be observed in chao soils when the clay content was lower than 270g kg-1, while it became obvious once CaCO3 was removed from these soils. The decomposition rate of plant material in the soil from which the native CaCO3 was removed was correlated significantly to both the clay content of the soil and the application rate of CaCO3. A preliminary correction equation describing the effect of clay and CaCO3 on the decomposition of organic material in chao soil was derived from the results obtained.展开更多
Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing fo...Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing four measurement plots, were established for every soil type studied. In a stepwise multiple regression, both soil parent material (i.e. a combination of subsoil texture and geology) (p〈0.001), and drainage class (p=0.006) were significant predictors of site index (tree age 25), and the overall linear regression model had an R2 value of 0.55. The extremes of soil parent material differed by 3.9 m site index (loamy subsoil on the Wicomico-Penholoway surfaces versus clayey subsoil on the Pamlico-Princess Anne surfaces). Each increment of drainage class differed by 0.7 m site index. For example, a poorly drained soil had 0.7 m lower site index than a somewhat poorly drained soil. For seven of the eleven soil types studied, there is greater than 80% probability that estimated mean site index is within ±0.8 m of the actual soil type mean site index. The other four soil types (labeled G, I, C and K) need to be either redefined or sampled more intensively. Two of these need to be subdivided in order to adequately characterize site quality, one based on geology (Soil type G) and one based on soil drainage class (Soil type I). Variation in soil drainage class and varying amounts of topsoil displaced into windrows were both factors influencing site quality variation of a third soil type (Soil type C). The wide variation in site index data for a fourth soil type (Soil type K) appeared to be due, in part, to sampling study locations and individual measurement plots with less than optimum bedding and/or artificial drainage. Soil parent material (subsoil texture and geology) along with drainage class were found to be important factors influencing site quality on the South Carolina Lower Coastal Plain.展开更多
The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements we...The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ).展开更多
With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the c...With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the condition of saturated steady water flow were conducted to qualify the effects of soil texture com- position on the retardation factor (R) of K~(+) transport. The results showed that the retardation factor of K~ (+) transport in the tested soil columns greatly increased with increasing clay contents. In an attempt to use pedo-transfer function (PTF) approach in the solute transport study, a preliminary PTF was established through the six packed columns (Columns 1~6) with soil basic data including soil bulk density, volumet- ric water content and clay content to predict the retardation factor, and proved valid by the satisfactory prediction of R in Column 7.展开更多
A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall s...A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall stiffness of the structural system and may increase the natural period of the system. The effect of soil flexibility is suggested to be accounted through consideration of springs which have specified stiffness and soil half space. Results show that the dynamic response of frame structure to vibrations is due to applied dynamic load and is highly dependent on the soil type and the method of modeling soil structure interaction. The response of frame structure under dynamic load is higher in case of linear discrete independent spring as comparing with perfect bond cases. Except the response of frame in case of piles embedded in soft clay, half space are higher than frame with piles and linear elastic spring due to the interaction between the frequencies of applied load and frequencies of frame structure. Also, result showed that it is important to include the soil-structure interaction in the analysis of the system in order to correctly simulate the dynamic problem for controlling on the resonance phenomena.展开更多
Acidic deposition,which is mainly caused by atmospheric pollution,is one of the global environmental problems.Thinning is an effective management to improve the tree productivity,reduce the wildfire risk and maintain ...Acidic deposition,which is mainly caused by atmospheric pollution,is one of the global environmental problems.Thinning is an effective management to improve the tree productivity,reduce the wildfire risk and maintain a healthy forest.Since thinning may reduce the effect of acidic deposition,the effect of thinning on acidic deposition was estimated.The biomass,soil properties,pH value of runoff and groundwater in both unthinned and thinned Chinese fir plantations were measured and compared over a 5-year period(2-6 years after thinning).The results indicated that acidic deposition in the Huitong State Ecosystem Research Station was serious,and it got worse with time.Forest thinning resulted in a huge change in biomass and soil properties.During the 5-year monitoring period,biomasses of understory and litter,plant species richness,coverage of undergrowth plant layer were significantly higher in thinned site than in unthinned site.Moreover,higher soil fertility as well as lower amounts of runoff and groundwater were found in thinned site.It was suggested that thinning could improve the structure of forest,leading to restoring the effluent(runoff and groundwater) pH to the normal value.展开更多
We studied the influence of soil heterogeneity on plant community structure in a semiarid region of Central Mexico using Bray-Curtis Ordination. The results showed that some edaphic factors, such as soil depth, organi...We studied the influence of soil heterogeneity on plant community structure in a semiarid region of Central Mexico using Bray-Curtis Ordination. The results showed that some edaphic factors, such as soil depth, organic matter, and potassium and calcium content, explained 80% of the total variation in structure of the studied communities. We found that soil resources were heterogeneously distributed in the study area, indicating that the edaphic variables considered in this study explain the existing plant community variability, moreover the presence of some shrubs as Krameria cytisoides influences the soil properties, suggesting that there is a reciprocal effect between plant and soil.展开更多
The purpose of the investigation was to assess the opportunity to use spring waters as indicator for the load state of rural landscape ecosystems. In the periods from 2000-2003 and 2011-2012, the physical and chemical...The purpose of the investigation was to assess the opportunity to use spring waters as indicator for the load state of rural landscape ecosystems. In the periods from 2000-2003 and 2011-2012, the physical and chemical water quality of 55 freshwater springs in the German federal state of the Saarland was investigated in monthly intervals. The catchment areas of the springs represented the prevailing geological formations in the Saarland as well as the main land use types such as forest, grassland and arable land. The results show a clear correlation between the nitrate content and the share of arable land in the closer catchment area of the springs. The problem of acidification and related processes occurs mainly at the sites with acid parent rock material and accordingly substrates deficient in lime. Very low pH-values between 4 and 5 are observed and the aluminum concentration levels are consistently increased. Especially at sites with low calcium content in the geological substrate, a progressive destruction of the clay minerals can be assumed. In the extremely acidic spring waters, which showed the highest aluminum contamination during the measurement 10 years ago, the aluminum-values decreased slightly. This indicates that the clay minerals in these locations are already completely destroyed. Thus, it can be concluded that the investigation of spring waters provides information on the geo-ecological conditions in catchment areas. By means of the multi-temporal approach, changes of land use or other influences by human activities can be detected.展开更多
Approximately, 75% of constructed dams in the world are earth dams. The use of an earth dam is restricted by its geometrical area, weir restriction, and the availability of sufficient amount of earth material. These r...Approximately, 75% of constructed dams in the world are earth dams. The use of an earth dam is restricted by its geometrical area, weir restriction, and the availability of sufficient amount of earth material. These restrictions can be alleviated by the use of reinforced soil. In this research study the use of geotextile to stabilize and increase the shear strength of clay soils has been investigated. The results show an increase of about 25% in shear strength and cause an enhancement of stability in sandy soil in earth dams.展开更多
Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by AB...Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by ABAQUS sot'cware to study the impact of cross section type, the pile spacing and soil properties on soil arching effect. We find that cross section type of the pile has a certain influence on soil stress distribution in front of the barrier piles by comparing circular cross section and rectangular cross section. We also find that clear distance between the barrier piles and cohesive force of the soil have a great influence on that impact. We can increase clear distance between the barrier piles appropriately to improve the efficiency of construction and reduce the proiect cost.展开更多
As the offshore engineering moving from shallow to deep waters, the foundation types for fixed and floating platforms have been gradually evolving to minimize engineering costs and structural risks in the harsh offsho...As the offshore engineering moving from shallow to deep waters, the foundation types for fixed and floating platforms have been gradually evolving to minimize engineering costs and structural risks in the harsh offshore environments. Particular focus of this paper is on the foundation instability and its failure mechanisms as well as the relevant theory advances for the prevailing foundation types in both shallow and deep water depths. Piles, spudcans, gravity bases, suction caissons, and plate anchors are detailed in this paper. The failure phenomena and mechanisms for each type of foundations are identified and summarized, respectively. The theoretical approaches along with sophisticated empirical solutions for the bearing capacity problems are then presented. The major challenges are from flow-structure-soil coupling processes, rigorous constitutive modeling of cyclic behaviors of marine sediments, and the spatial variability of soil properties for large-spreading structures. Further researches are suggested to reveal the instability mechanisms for underpinning the evolution of offshore foundations.展开更多
Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (...Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.展开更多
基金Project partly supported by the Natural Science Foundation of Fujian Province.
文摘A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.
文摘Decomposition experiments of 14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively. The amount of residual 14C in, or 14CO2 evolved from, the soils at intervals after the beginning of decomposition were measured and the distribution of native and labelled C between particle size fractions isolated from these soils was edtermined. Results showed that contents of both labelled (14C) and non-labelled (12C) carbon decreased with increasing particle size. The enrichment factor for 14C was higher than that for 12C in the clay fraction, the reverse being true for the silt enrichment factors. The effect of soil texture on the decomposition of plant material could not be observed in chao soils when the clay content was lower than 270g kg-1, while it became obvious once CaCO3 was removed from these soils. The decomposition rate of plant material in the soil from which the native CaCO3 was removed was correlated significantly to both the clay content of the soil and the application rate of CaCO3. A preliminary correction equation describing the effect of clay and CaCO3 on the decomposition of organic material in chao soil was derived from the results obtained.
文摘Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing four measurement plots, were established for every soil type studied. In a stepwise multiple regression, both soil parent material (i.e. a combination of subsoil texture and geology) (p〈0.001), and drainage class (p=0.006) were significant predictors of site index (tree age 25), and the overall linear regression model had an R2 value of 0.55. The extremes of soil parent material differed by 3.9 m site index (loamy subsoil on the Wicomico-Penholoway surfaces versus clayey subsoil on the Pamlico-Princess Anne surfaces). Each increment of drainage class differed by 0.7 m site index. For example, a poorly drained soil had 0.7 m lower site index than a somewhat poorly drained soil. For seven of the eleven soil types studied, there is greater than 80% probability that estimated mean site index is within ±0.8 m of the actual soil type mean site index. The other four soil types (labeled G, I, C and K) need to be either redefined or sampled more intensively. Two of these need to be subdivided in order to adequately characterize site quality, one based on geology (Soil type G) and one based on soil drainage class (Soil type I). Variation in soil drainage class and varying amounts of topsoil displaced into windrows were both factors influencing site quality variation of a third soil type (Soil type C). The wide variation in site index data for a fourth soil type (Soil type K) appeared to be due, in part, to sampling study locations and individual measurement plots with less than optimum bedding and/or artificial drainage. Soil parent material (subsoil texture and geology) along with drainage class were found to be important factors influencing site quality on the South Carolina Lower Coastal Plain.
文摘The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ).
基金Project (No. 49901009) supported by the National Natural Science Foundation of China.
文摘With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the condition of saturated steady water flow were conducted to qualify the effects of soil texture com- position on the retardation factor (R) of K~(+) transport. The results showed that the retardation factor of K~ (+) transport in the tested soil columns greatly increased with increasing clay contents. In an attempt to use pedo-transfer function (PTF) approach in the solute transport study, a preliminary PTF was established through the six packed columns (Columns 1~6) with soil basic data including soil bulk density, volumet- ric water content and clay content to predict the retardation factor, and proved valid by the satisfactory prediction of R in Column 7.
文摘A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall stiffness of the structural system and may increase the natural period of the system. The effect of soil flexibility is suggested to be accounted through consideration of springs which have specified stiffness and soil half space. Results show that the dynamic response of frame structure to vibrations is due to applied dynamic load and is highly dependent on the soil type and the method of modeling soil structure interaction. The response of frame structure under dynamic load is higher in case of linear discrete independent spring as comparing with perfect bond cases. Except the response of frame in case of piles embedded in soft clay, half space are higher than frame with piles and linear elastic spring due to the interaction between the frequencies of applied load and frequencies of frame structure. Also, result showed that it is important to include the soil-structure interaction in the analysis of the system in order to correctly simulate the dynamic problem for controlling on the resonance phenomena.
基金Project(41271332)supported by the National Natural Science Foundation of ChinaProject(11JJ2031)supported by the Natural Science Foundation of Hunan Province,China
文摘Acidic deposition,which is mainly caused by atmospheric pollution,is one of the global environmental problems.Thinning is an effective management to improve the tree productivity,reduce the wildfire risk and maintain a healthy forest.Since thinning may reduce the effect of acidic deposition,the effect of thinning on acidic deposition was estimated.The biomass,soil properties,pH value of runoff and groundwater in both unthinned and thinned Chinese fir plantations were measured and compared over a 5-year period(2-6 years after thinning).The results indicated that acidic deposition in the Huitong State Ecosystem Research Station was serious,and it got worse with time.Forest thinning resulted in a huge change in biomass and soil properties.During the 5-year monitoring period,biomasses of understory and litter,plant species richness,coverage of undergrowth plant layer were significantly higher in thinned site than in unthinned site.Moreover,higher soil fertility as well as lower amounts of runoff and groundwater were found in thinned site.It was suggested that thinning could improve the structure of forest,leading to restoring the effluent(runoff and groundwater) pH to the normal value.
文摘We studied the influence of soil heterogeneity on plant community structure in a semiarid region of Central Mexico using Bray-Curtis Ordination. The results showed that some edaphic factors, such as soil depth, organic matter, and potassium and calcium content, explained 80% of the total variation in structure of the studied communities. We found that soil resources were heterogeneously distributed in the study area, indicating that the edaphic variables considered in this study explain the existing plant community variability, moreover the presence of some shrubs as Krameria cytisoides influences the soil properties, suggesting that there is a reciprocal effect between plant and soil.
文摘The purpose of the investigation was to assess the opportunity to use spring waters as indicator for the load state of rural landscape ecosystems. In the periods from 2000-2003 and 2011-2012, the physical and chemical water quality of 55 freshwater springs in the German federal state of the Saarland was investigated in monthly intervals. The catchment areas of the springs represented the prevailing geological formations in the Saarland as well as the main land use types such as forest, grassland and arable land. The results show a clear correlation between the nitrate content and the share of arable land in the closer catchment area of the springs. The problem of acidification and related processes occurs mainly at the sites with acid parent rock material and accordingly substrates deficient in lime. Very low pH-values between 4 and 5 are observed and the aluminum concentration levels are consistently increased. Especially at sites with low calcium content in the geological substrate, a progressive destruction of the clay minerals can be assumed. In the extremely acidic spring waters, which showed the highest aluminum contamination during the measurement 10 years ago, the aluminum-values decreased slightly. This indicates that the clay minerals in these locations are already completely destroyed. Thus, it can be concluded that the investigation of spring waters provides information on the geo-ecological conditions in catchment areas. By means of the multi-temporal approach, changes of land use or other influences by human activities can be detected.
文摘Approximately, 75% of constructed dams in the world are earth dams. The use of an earth dam is restricted by its geometrical area, weir restriction, and the availability of sufficient amount of earth material. These restrictions can be alleviated by the use of reinforced soil. In this research study the use of geotextile to stabilize and increase the shear strength of clay soils has been investigated. The results show an increase of about 25% in shear strength and cause an enhancement of stability in sandy soil in earth dams.
文摘Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by ABAQUS sot'cware to study the impact of cross section type, the pile spacing and soil properties on soil arching effect. We find that cross section type of the pile has a certain influence on soil stress distribution in front of the barrier piles by comparing circular cross section and rectangular cross section. We also find that clear distance between the barrier piles and cohesive force of the soil have a great influence on that impact. We can increase clear distance between the barrier piles appropriately to improve the efficiency of construction and reduce the proiect cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.11232012,11372319 and 51309213)the National Key Basic Research Program of China(Grant No.2014CB046204)
文摘As the offshore engineering moving from shallow to deep waters, the foundation types for fixed and floating platforms have been gradually evolving to minimize engineering costs and structural risks in the harsh offshore environments. Particular focus of this paper is on the foundation instability and its failure mechanisms as well as the relevant theory advances for the prevailing foundation types in both shallow and deep water depths. Piles, spudcans, gravity bases, suction caissons, and plate anchors are detailed in this paper. The failure phenomena and mechanisms for each type of foundations are identified and summarized, respectively. The theoretical approaches along with sophisticated empirical solutions for the bearing capacity problems are then presented. The major challenges are from flow-structure-soil coupling processes, rigorous constitutive modeling of cyclic behaviors of marine sediments, and the spatial variability of soil properties for large-spreading structures. Further researches are suggested to reveal the instability mechanisms for underpinning the evolution of offshore foundations.
基金the University of Damascus, Syria, for financial support of the Ph.D.(No.1473)
文摘Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.