Elsholtzia argyi and Elsholtzia splendens, which are Chinese endemic Pb/Zn mined and Cu mined ecotype respec- tively, were investigated on the aspect of their response to Pb toxicity in the presence or absence of EDTA...Elsholtzia argyi and Elsholtzia splendens, which are Chinese endemic Pb/Zn mined and Cu mined ecotype respec- tively, were investigated on the aspect of their response to Pb toxicity in the presence or absence of EDTA addition. After 8 d’s Pb treatment, root length, root surface area and root volume of E. splendens decreased much more than those of E. argyi, and reduced considerably with increase of Pb, while no marked change was noted for root average diameter. Compared to E. argyi, length of root with diameter (D)<0.2 mm was significantly reduced for E. splendens as Pb increased. D<0.1 mm E. splendens root had cross-sectional surface area at Pb≥10 mg/L, while for E. argyi, it was at Pb≥25 mg/L. With increase of Pb, DW of E. splendens decreased much more than that of E. argyi. E. argyi exhibited much more tolerance to Pb toxicity than E. splendens. Treatment with 100 mg/L Pb plus 50 mmol/L EDTA significantly decreased the length and surface area of D≤0.2 mm root, increased the length and surface area of 0.2≤D≤0.8 mm root for the case of E. argyi, while for E. splendens, length and surface area of D<0.6 mm root reduced, as compared to 100 mg/L Pb treatment, alone. At 100 mg/L Pb, shoot Pb accumulation in E. splendens and E. argyi were 27.9 and 89.0 μg/plant DW respectively, and much more Pb was uptaken by the root and translocated to the stem of E. argyi as compared to E. splendens. Treatment of the plant with 100 mg/L Pb plus 50 mmol/L EDTA increased leaf Pb accumulation from 16.8 to 84.9 g/plant for E.splendens and from 18.8 to 52.5 g/plant for E. argyi, while both root and stem Pb pronouncedly reduced for both Elsholtzia species. The increased translocation of Pb to the leaf of E. splendens being than that of E. argyi after treatment with 100 mg/L Pb plus 50 mmol/L EDTA should be further investigated.展开更多
Ombrotrophic bogs are faithful archive of atmospheric metal deposition, but the potential for fens to reconstruct environmental change is often underestimated. In this study, some new data on the Pb depositional histo...Ombrotrophic bogs are faithful archive of atmospheric metal deposition, but the potential for fens to reconstruct environmental change is often underestimated. In this study, some new data on the Pb depositional history in northeast China were provided using two ^210Pb-dated peat sequences from a poor fen in the Fenghuang Mountain of Heilongjiang province. Anthropogenic, detritic and atmospheric soil sources were discriminated using a two-step sequential digestion (weak acid leaching to liberate mobile Pb which is often regarded as anthropogenic Pb, especially for recent samples) and a ratio of unsupported ^210Pb and supported ^210Pb with the logic of that the ^214Pb mainly represents the residual detritus (constant throughout the core) and the unsupported ^210Pb arises from atmospheric fallout. A higher ^210Pb/^214Pb suggests more contributions from atmospheric deposition to the Pb content in the peat, and a ratio of 10 was defined to indicate the boundary between detrific input and atmospheric deposition. The detritic Pb was estimated to be 10-13 mg·kg^-1, the anthropogenic Pb ranged from 10-80 mg·kg^-1, and the atmospheric soil-derived Pb ranged from 〈 5 mg·kg^-1 to 30 mg·kg^-1. The history of anthropogenic Pb pollution over the last 150 years was reconstructed, and the calculated Pb deposition rate (AR Pb) ranged from 5 to 56 mg·m^-2·yr^-1. Using Ti as a reliable reference, the enrichment factor of Pb (EF Pb) relative to the upper continental crust was calculated. Both AR Pb and EF Pb increased with time, especially after the foundation of the People's Republic of China. This is consistent with increasing industrialization and coal burning in the last 60 years in northeast China. The present record of anthropogenic Pb deposition was consistent with the previous reports and an increasing trend of environmental pollution due to anthropogenic activities, in contrasts to Europe and North America which have experienced a major environmental cleanup. For the first time, this work estimates atmospheric Pb deposition via a minerotrophic peat core in China. This will enhance the use of peat archives for studies of environmental change.展开更多
A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contamin...A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.展开更多
基金Project supported by the National Basic Research Program (973)(No. 2002CB410804) of China and the National Natural ScienceFoundation of China (No. 20307008)
文摘Elsholtzia argyi and Elsholtzia splendens, which are Chinese endemic Pb/Zn mined and Cu mined ecotype respec- tively, were investigated on the aspect of their response to Pb toxicity in the presence or absence of EDTA addition. After 8 d’s Pb treatment, root length, root surface area and root volume of E. splendens decreased much more than those of E. argyi, and reduced considerably with increase of Pb, while no marked change was noted for root average diameter. Compared to E. argyi, length of root with diameter (D)<0.2 mm was significantly reduced for E. splendens as Pb increased. D<0.1 mm E. splendens root had cross-sectional surface area at Pb≥10 mg/L, while for E. argyi, it was at Pb≥25 mg/L. With increase of Pb, DW of E. splendens decreased much more than that of E. argyi. E. argyi exhibited much more tolerance to Pb toxicity than E. splendens. Treatment with 100 mg/L Pb plus 50 mmol/L EDTA significantly decreased the length and surface area of D≤0.2 mm root, increased the length and surface area of 0.2≤D≤0.8 mm root for the case of E. argyi, while for E. splendens, length and surface area of D<0.6 mm root reduced, as compared to 100 mg/L Pb treatment, alone. At 100 mg/L Pb, shoot Pb accumulation in E. splendens and E. argyi were 27.9 and 89.0 μg/plant DW respectively, and much more Pb was uptaken by the root and translocated to the stem of E. argyi as compared to E. splendens. Treatment of the plant with 100 mg/L Pb plus 50 mmol/L EDTA increased leaf Pb accumulation from 16.8 to 84.9 g/plant for E.splendens and from 18.8 to 52.5 g/plant for E. argyi, while both root and stem Pb pronouncedly reduced for both Elsholtzia species. The increased translocation of Pb to the leaf of E. splendens being than that of E. argyi after treatment with 100 mg/L Pb plus 50 mmol/L EDTA should be further investigated.
基金supported by the National Natural Science Foundation of China (Grant No.41301215)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20131058)+1 种基金the National Basic Research Program of China(Grant No.2012CB956100)the International Atomic Energy Agency (RC-19018)
文摘Ombrotrophic bogs are faithful archive of atmospheric metal deposition, but the potential for fens to reconstruct environmental change is often underestimated. In this study, some new data on the Pb depositional history in northeast China were provided using two ^210Pb-dated peat sequences from a poor fen in the Fenghuang Mountain of Heilongjiang province. Anthropogenic, detritic and atmospheric soil sources were discriminated using a two-step sequential digestion (weak acid leaching to liberate mobile Pb which is often regarded as anthropogenic Pb, especially for recent samples) and a ratio of unsupported ^210Pb and supported ^210Pb with the logic of that the ^214Pb mainly represents the residual detritus (constant throughout the core) and the unsupported ^210Pb arises from atmospheric fallout. A higher ^210Pb/^214Pb suggests more contributions from atmospheric deposition to the Pb content in the peat, and a ratio of 10 was defined to indicate the boundary between detrific input and atmospheric deposition. The detritic Pb was estimated to be 10-13 mg·kg^-1, the anthropogenic Pb ranged from 10-80 mg·kg^-1, and the atmospheric soil-derived Pb ranged from 〈 5 mg·kg^-1 to 30 mg·kg^-1. The history of anthropogenic Pb pollution over the last 150 years was reconstructed, and the calculated Pb deposition rate (AR Pb) ranged from 5 to 56 mg·m^-2·yr^-1. Using Ti as a reliable reference, the enrichment factor of Pb (EF Pb) relative to the upper continental crust was calculated. Both AR Pb and EF Pb increased with time, especially after the foundation of the People's Republic of China. This is consistent with increasing industrialization and coal burning in the last 60 years in northeast China. The present record of anthropogenic Pb deposition was consistent with the previous reports and an increasing trend of environmental pollution due to anthropogenic activities, in contrasts to Europe and North America which have experienced a major environmental cleanup. For the first time, this work estimates atmospheric Pb deposition via a minerotrophic peat core in China. This will enhance the use of peat archives for studies of environmental change.
基金Project(20507022) supported by the National Natural Science Foundation of China
文摘A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.