期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
冬小麦灌浆期光合参数及产量对土壤高湿和干旱变化的响应 被引量:3
1
作者 任三学 齐月 +1 位作者 田晓丽 赵花荣 《中国农学通报》 2022年第29期96-102,共7页
为研究土壤湿度变化对冬小麦光合参数和产量变化的影响机制,在防雨棚人工控制灌水,设置土壤高湿、中度干旱、重旱、对照4个处理的田间冬小麦试验,研究土壤水分变化对灌浆期冬小麦光合参数及产量的影响。结果表明:冬小麦灌浆期叶片净光... 为研究土壤湿度变化对冬小麦光合参数和产量变化的影响机制,在防雨棚人工控制灌水,设置土壤高湿、中度干旱、重旱、对照4个处理的田间冬小麦试验,研究土壤水分变化对灌浆期冬小麦光合参数及产量的影响。结果表明:冬小麦灌浆期叶片净光合速率、蒸腾速率、气孔导度随土壤水分降低而降低。重旱处理冬小麦叶片胞间CO_(2)浓度与对照相近,引起光合作用下降的主要原因是非气孔因素限制。土壤高湿冬小麦叶片有效利用光强区间拉大,而土壤干旱胁迫叶片有效利用光强的区间缩小,土壤高湿和干旱胁迫叶片夜间呼吸作用都提高,干旱逆境胁迫白天光合作用受限减弱,夜间呼吸作用增强,消耗营养增多“,一减一增”是其籽粒瘪秕,产量低的生理原因。土壤高湿和干旱影响冬小麦灌浆期籽粒干物质输送、积累的源库匹配。高湿处理叶片的绿色器官光合产物输送籽粒占主导,开花前营养器官干物质转运、贡献率变小;干旱逆境胁迫下,叶片等绿色器官光合产物少,输送籽粒干物质减少,但花前营养器官干物质转运、贡献率相对增大;收获指数土壤高湿和对照基本相近,干旱处理较对照明显偏小。 展开更多
关键词 冬小麦 光合参数 产量 土壤高湿 干旱
下载PDF
Effects of Temperature,Soil Moisture,Soil Type and Their Interactions on Soil Carbon Mineralization in Zoigê Alpine Wetland,Qinghai-Tibet Plateau 被引量:25
2
作者 GAO Junqin OUYANG Hua +2 位作者 LEI Guangchun XU Xingliang ZHANG Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2011年第1期27-35,共9页
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige al... Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige alpine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation experiment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their interactions on CO2 and CH4 emission rates in Zoige alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respectively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the temperature and soil type (p 〈 0.001), and soil moisture and soil type (p 〈 0.001), and CH4 emission rate was significantly affected by the interaction of the temperature and soil moisture (p 〈 0.001). Q10 values for CO2 emission rate are higher at the range of 5 ℃-25℃ than 25 ℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoige alpine wetland. 展开更多
关键词 alpine wetland carbon mineralization marsh soil peat soil soil moisture Qinghai-Tibet Plateau
下载PDF
Spatial and temporal variation of drought index in a typical steep alpine terrain in Hengduan Mountains 被引量:1
3
作者 ZHU Guo-feng YANG Ling +3 位作者 QIN Da-he TONG Hua-li LIU Yuan-feng LI Jia-fang 《Journal of Mountain Science》 SCIE CSCD 2016年第7期1186-1199,共14页
This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typical... This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration(E0) as defined by the Penman Monteith model modified by FAO(1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of-0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index(NDVI). 展开更多
关键词 Drought index Normalized Difference Vegetation Index Evapotranspiration Thin plate smoothing splines Hengduan Mountains
下载PDF
A mathematical model of soil moisture spatial distribution on the hill slopes of the Loess Plateau 被引量:9
4
作者 傅伯杰 杨志坚 +1 位作者 王仰麟 张平文 《Science China Earth Sciences》 SCIE EI CAS 2001年第5期395-402,共8页
Based on important factors that affect soil moisture spatialdistribution, such as the slope gradients, land use, vegetation cover, and surface water diffusion characteristics together with field measurements of soil m... Based on important factors that affect soil moisture spatialdistribution, such as the slope gradients, land use, vegetation cover, and surface water diffusion characteristics together with field measurements of soil moisture data obtained from the surface soil under different land use struc-tures, a soil moisture spatial distribution model was established. The diffusion degree coefficient of surface water for different vegetations was estimated from soil moisture values obtained from field measurements. The model can be solved using the finite unit method. The soil moisture spatial distribution on the hill slopes in the Loess Plateau were simulated by the model. A comparison of the simulated values with measurement data shows that the model is a good fit. 展开更多
关键词 Loess Plateau hill slope soil moisture mathematical model
原文传递
Above-and belowground trait linkages of dominant species shape responses of alpine steppe composition to precipitation changes in the Tibetan Plateau 被引量:2
5
作者 Zhi Zheng Yue Zhang +3 位作者 Shihu Zhang Qun Ma Dajie Gong Guoying Zhou 《Journal of Plant Ecology》 SCIE CSCD 2021年第4期569-579,共11页
Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition... Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition across different types of grassland worldwide,few studies have specifically focused on the effects of precipitation changes on high-altitude alpine steppe at community and plant species levels in the Tibetan Plateau.Methods We investigated the effects of growing-season precipitation changes(reduced precipitation by 50%,ambient precipitation,enhanced precipitation by 50%)for 6 years on plant community composition in an alpine steppe of the Tibetan Plateau by linking above-to belowground traits of dominant species.Important Findings We found that reduced precipitation shifted community composition from dominance by bunchgrass(primarily Stipa purpurea)to dominance by rhizomatous grass(primarily Leymus secalinus).Roots and leaf traits of L.secalinus and S.purpurea differed in their responses to reduced precipitation.Reduced precipitation enhanced root vertical length and carbon(C)allocation to deep soil layers,and decreased the leaf width in L.secalinus,but it did not change the traits in S.purpurea.Moreover,reduced precipitation significantly enhanced rhizome biomass,length,diameter and adventitious root at the rhizome nodes in L.secalinus.These changes in traits may render rhizomatous grass greater competitive during drought stress.Therefore,our findings highlight important roles of above-and belowground traits of dominant species in plant community composition of alpine steppe under precipitation change. 展开更多
关键词 precipitation change functional group dominant species Stipa purpurea Leymus secalinus soil moisture plant traits alpine steppe Tibetan Plateau
原文传递
Review on Soil Moisture of Plantation Land in the Loess Plateau 被引量:1
6
作者 SUN Zhongfeng ZHANG Xuepei ZHU Jinzhao LIU Huifang 《Chinese Forestry Science and Technology》 2005年第3期22-28,共7页
Water is a crucial factor influencing eco-environment conservation in the Loess Area in China. Soilmoisture is also an indispensable factor to plant growth because of limited water supply. In this paper,previous studi... Water is a crucial factor influencing eco-environment conservation in the Loess Area in China. Soilmoisture is also an indispensable factor to plant growth because of limited water supply. In this paper,previous studies of soil moisture are summarized from methods and contents. Meanwhile, some problems inthe relevant researches are pointed out and discussed. Some solutions are brought forward. 展开更多
关键词 the Loess Plateau plantation land soil moisture HETEROGENEITY phytocommunities ecoenvironment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部