The quantification of soil CO2 effiux is crucial for better understanding the interactions between driving variables and C losses from black soils in Northeast China and for assessing the function of black soil as a n...The quantification of soil CO2 effiux is crucial for better understanding the interactions between driving variables and C losses from black soils in Northeast China and for assessing the function of black soil as a net source or sink of atmospheric CO2 depending upon land use. This study investigated responses of soil CO2 effiux variability to soil temperature interactions with different soil moisture levels under various land use types including grassland, bare land, and arable (maize, soybean, and wheat) land in the black soil zone of Northeast China. The soil CO2 effiuxes with and without live roots, defined as the total CO2 efftux (FtS) and the root-free CO2 ei^lux (FrfS), respectively, were measured from April 2009 to May 2010 using a static closed chamber technique with gas chromatography. The seasonal soil CO2 fluxes tended to increase from the beginning of the measurements until they peaked in summer and then declined afterwards. The mean seasonal FtS ranged from 20.3=h7.8 to 58.1~21.3 mg CO2-C m-2 h-1 for all land use types and decreased in the order of soybean land ~ grassland 〉 maize land ~ wheat land ) bare land, while the corresponding values of FrfS were relatively lower, ranging from 20.3~7.8 to 42.3~21.3 mg CO2-C m-2 h-1. The annual cumulative FtS was in the range of 107-315 g CO2-C m-2 across all land uses types. The seasonM CO2 effiuxes were significantly (P 〈: 0.001) sensitive to soil temperature at 10 cm depth and were responsible for up to 62% of the CO2 effiux variability. Correspondingly, the temperature coefficient Q10 values varied from 2.1 to 4.5 for the seasonal FtS and 2.2 to 3.9 for the FrfS during the growing season. Soil temperature interacting with soil moisture accounted for a significant fraction of the CO2 flux variability for FtS (up to 61%) and FrfS (up to 67%) via a well-defined multiple regression model, indicating that temperature sensitivity of C02 flux can be mediated by water availability, especially under water stress.展开更多
In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee netw...In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.展开更多
Salinity is a major soil contamination problem in Australia. To explore salinity remediation, we evaluated the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) in roots and shoots...Salinity is a major soil contamination problem in Australia. To explore salinity remediation, we evaluated the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) in roots and shoots and in the supporting soil of the naturally occurring grasses, Cynodon dactylon and Thinopyrurn ponticum, at two salt-affected sites, Gumble and Cundumbul in central-western New South Wales, Australia. The physiological parameters of the two grass species, including net photosynthetic rate (Pn), stomatal conductance (gs), and intercellular CO2 concentration (Ci), were investigated using one mature leaf from C. dactylon and T. ponticum populations. Increasing salinity levels in the topsoil had a significant influence on Ci and gs, whereas no significant effect occurred on Pn in C. dactylon and T. ponticum. The Pn values in C. dactylon and T. ponticum were greater at Cundumbul than at Gumble. The greater Mg concentration facilitated greater Pn in C. dactylon and T. ponticum populations at Cundumbul than Gumble. With increasing salinity levels in the soil, Na accumulation increased in C. dactylon and T. ponticum. The ratio between K and Na was ~ 1 in roots and shoots of both populations irrespective of the sites. Bioaccumulation factor (BF) and translocation factor (TF) results revealed that K and Na translocations were significantly higher in T. ponticum than in C. dactylon, whereas Ca and Mg translocations were significantly higher in C. dactylon than in T. ponticum. Accumulation of Na, K, Mg, and Ca ions was higher in T. ponticum than in C. dactylon; therefore, we suggest that T. ponticum as a greater salt accumulator than C. dactylon could be used for revegetation and phytoremediation of the salt-affected soils.展开更多
Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects...Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity (EC) and moisture content on CO2 and N20 emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0-15 and 15-30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space (WFPS) at 25 ~C. The measured depth-weighted EC of the saturated paste extract (ECe) across the sampling positions ranged from 0.43 to 4.65 dS m-1. Potential nitrogen (N) mineralization rate and CO2 emissions decreased with increasing soil ECe, but the relative decline in soil CO2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N20 emissions decreased from 133 g N20-N kg-1 soil at ECe ( 0.50 dS m-1 to 72 μg N20-N kg-1 soil at ECe = 4.65 dS m-1. In contrast, at 90% WFPS, soil N20 emissions increased from 262 g N20-N kg-1 soil at ECe : 0.81 dS m-1 to 849 g N20-N kg-1 soil at ECe : 4.65 dS m-1, suggesting that N20 emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil ECe and pattern of rainfall over the season need to be considered when up-scaling N20 and CO2 emissions from field to landscape scales.展开更多
An 80-d incubation experiment was conducted to investigate straw decomposition, the priming effect and microbial characteristics in a non-fertilized soil (soil 1) and a long-term organic manure-fertilized soil (soi...An 80-d incubation experiment was conducted to investigate straw decomposition, the priming effect and microbial characteristics in a non-fertilized soil (soil 1) and a long-term organic manure-fertilized soil (soil 2) with and without 13C-labeled maize straw amendment under different moisture levels. The soil 2 showed a markedly higher priming effect, microbial biomass C (Cmic), and β-glucosidase activity, and more abundant populations of bacteria and fungi than the soil 1. Also, soil CO2 emission, Cmic, /3- glucosidase activity, and bacterial and fungal population sizes were substantially enhanced by straw amendment. In the presence of straw, the amount of straw mineralization and assimilation by microbes in the soil at 55% of water holding capacity (WHC) were significantly higher by 31% and 17%, respectively, compared to those at 25% of WHC. In contrast, β-glucosidase activity and fungal population size were both enhanced as the moisture content decreased. Cmic decreased as straw availability decreased, which was mainly attributed to the reduction of straw-derived Cmic. Amended soils, except the amended soil 2 at 25% of WHC, had a more abundant fungal population as straw availability decreased, indicating that fungal decomposability of added straw was independent of straw availability. Non-metric multidimensional scaling analysis based on fungal denatured gradient gel electrophoresis band patterns showed that shifts in the fungal community structure occurred as water and straw availability varied. The results indirectly suggest that soil fungi are able to adjust their degradation activity to water and straw availability by regulating their community structure.展开更多
基金Supported by the National Basic Research Program of China(No.2011CB100506)the National Natural Science Foundation of China(No.40971152)the Natural Science Foundation of Heilongjiang Province,China(No.ZD200904)
文摘The quantification of soil CO2 effiux is crucial for better understanding the interactions between driving variables and C losses from black soils in Northeast China and for assessing the function of black soil as a net source or sink of atmospheric CO2 depending upon land use. This study investigated responses of soil CO2 effiux variability to soil temperature interactions with different soil moisture levels under various land use types including grassland, bare land, and arable (maize, soybean, and wheat) land in the black soil zone of Northeast China. The soil CO2 effiuxes with and without live roots, defined as the total CO2 efftux (FtS) and the root-free CO2 ei^lux (FrfS), respectively, were measured from April 2009 to May 2010 using a static closed chamber technique with gas chromatography. The seasonal soil CO2 fluxes tended to increase from the beginning of the measurements until they peaked in summer and then declined afterwards. The mean seasonal FtS ranged from 20.3=h7.8 to 58.1~21.3 mg CO2-C m-2 h-1 for all land use types and decreased in the order of soybean land ~ grassland 〉 maize land ~ wheat land ) bare land, while the corresponding values of FrfS were relatively lower, ranging from 20.3~7.8 to 42.3~21.3 mg CO2-C m-2 h-1. The annual cumulative FtS was in the range of 107-315 g CO2-C m-2 across all land uses types. The seasonM CO2 effiuxes were significantly (P 〈: 0.001) sensitive to soil temperature at 10 cm depth and were responsible for up to 62% of the CO2 effiux variability. Correspondingly, the temperature coefficient Q10 values varied from 2.1 to 4.5 for the seasonal FtS and 2.2 to 3.9 for the FrfS during the growing season. Soil temperature interacting with soil moisture accounted for a significant fraction of the CO2 flux variability for FtS (up to 61%) and FrfS (up to 67%) via a well-defined multiple regression model, indicating that temperature sensitivity of C02 flux can be mediated by water availability, especially under water stress.
文摘In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.
文摘Salinity is a major soil contamination problem in Australia. To explore salinity remediation, we evaluated the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) in roots and shoots and in the supporting soil of the naturally occurring grasses, Cynodon dactylon and Thinopyrurn ponticum, at two salt-affected sites, Gumble and Cundumbul in central-western New South Wales, Australia. The physiological parameters of the two grass species, including net photosynthetic rate (Pn), stomatal conductance (gs), and intercellular CO2 concentration (Ci), were investigated using one mature leaf from C. dactylon and T. ponticum populations. Increasing salinity levels in the topsoil had a significant influence on Ci and gs, whereas no significant effect occurred on Pn in C. dactylon and T. ponticum. The Pn values in C. dactylon and T. ponticum were greater at Cundumbul than at Gumble. The greater Mg concentration facilitated greater Pn in C. dactylon and T. ponticum populations at Cundumbul than Gumble. With increasing salinity levels in the soil, Na accumulation increased in C. dactylon and T. ponticum. The ratio between K and Na was ~ 1 in roots and shoots of both populations irrespective of the sites. Bioaccumulation factor (BF) and translocation factor (TF) results revealed that K and Na translocations were significantly higher in T. ponticum than in C. dactylon, whereas Ca and Mg translocations were significantly higher in C. dactylon than in T. ponticum. Accumulation of Na, K, Mg, and Ca ions was higher in T. ponticum than in C. dactylon; therefore, we suggest that T. ponticum as a greater salt accumulator than C. dactylon could be used for revegetation and phytoremediation of the salt-affected soils.
文摘Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity (EC) and moisture content on CO2 and N20 emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0-15 and 15-30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space (WFPS) at 25 ~C. The measured depth-weighted EC of the saturated paste extract (ECe) across the sampling positions ranged from 0.43 to 4.65 dS m-1. Potential nitrogen (N) mineralization rate and CO2 emissions decreased with increasing soil ECe, but the relative decline in soil CO2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N20 emissions decreased from 133 g N20-N kg-1 soil at ECe ( 0.50 dS m-1 to 72 μg N20-N kg-1 soil at ECe = 4.65 dS m-1. In contrast, at 90% WFPS, soil N20 emissions increased from 262 g N20-N kg-1 soil at ECe : 0.81 dS m-1 to 849 g N20-N kg-1 soil at ECe : 4.65 dS m-1, suggesting that N20 emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil ECe and pattern of rainfall over the season need to be considered when up-scaling N20 and CO2 emissions from field to landscape scales.
基金Supported by the National Basic Research Program(973 Program)of China(No.2011CB100506)the Knowledge Innovation Program of Chinese Academy of Sciences(No.CXJQ120111)China Agriculture Research System-Wheat
文摘An 80-d incubation experiment was conducted to investigate straw decomposition, the priming effect and microbial characteristics in a non-fertilized soil (soil 1) and a long-term organic manure-fertilized soil (soil 2) with and without 13C-labeled maize straw amendment under different moisture levels. The soil 2 showed a markedly higher priming effect, microbial biomass C (Cmic), and β-glucosidase activity, and more abundant populations of bacteria and fungi than the soil 1. Also, soil CO2 emission, Cmic, /3- glucosidase activity, and bacterial and fungal population sizes were substantially enhanced by straw amendment. In the presence of straw, the amount of straw mineralization and assimilation by microbes in the soil at 55% of water holding capacity (WHC) were significantly higher by 31% and 17%, respectively, compared to those at 25% of WHC. In contrast, β-glucosidase activity and fungal population size were both enhanced as the moisture content decreased. Cmic decreased as straw availability decreased, which was mainly attributed to the reduction of straw-derived Cmic. Amended soils, except the amended soil 2 at 25% of WHC, had a more abundant fungal population as straw availability decreased, indicating that fungal decomposability of added straw was independent of straw availability. Non-metric multidimensional scaling analysis based on fungal denatured gradient gel electrophoresis band patterns showed that shifts in the fungal community structure occurred as water and straw availability varied. The results indirectly suggest that soil fungi are able to adjust their degradation activity to water and straw availability by regulating their community structure.