The objective of this study was to analyze the effects of climate change and doubled atmospheric CO2 concentrations, as well as the combined effects of climate change and doubling atmospheric CO2 concentrations on soi...The objective of this study was to analyze the effects of climate change and doubled atmospheric CO2 concentrations, as well as the combined effects of climate change and doubling atmospheric CO2 concentrations on soil organic carbon (SOC) in the alpine steppe of the northern Tibetan Plateau using the CENTURY model. The results indicate that SOC loss in climate change scenarios varied from 49.77 52.36% in the top 20 cm. The simulation results obtained for a P1T0 scenario (increased precipitation and unchanged temperature), POT1 scenario (unchanged precipitation and increased temperature), and P1T1 scenario (increased precipitation and increased temperature) were similar. The alpine steppe in the P1T1 scenarios lost the greatest amount of SOC (844.40 g C m-2, representing the least amount of SOC) by the end of the simulation. The simulation for POT1 scenarios resulted in a 49.77% loss of SOC. However, SOC increased 12.87% under the COs doubling scenario, compared with the unchanged CO2 scenario. CO2 enhancement effects on SOC were greater than the climate change effects on SOC alone. The simulation of combined climate change and doubling atmospheric CO2 led to a decrease in SOC. This result indicated a decrease of 52.39% in SOC for the P1T1 + 2 × CO2 scenario, 49.81% for the POT1 + 2 ×CO2 scenario, and 52.30% for the P1T0 + 2 ×CO2 scenario over the next 50 years. Therefore, SOC content in the alpine steppe will change because of changes in precipitation, temperature and atmospheric CO2 concentrations.展开更多
Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC). SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different so...Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC). SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different soil erosion extents at Nelson Farm during 1998-100 were simulated using stochastic modelling. Results based on numerous simulations showed that SOC decreased with elevated atmospheric temperature but increased with atmospheric CO2 concentration. Therefore, there was a counteract effect on SOC dynamics between climate warming and elevated CO2. For different soil erosion extents, warming 1℃ and elevated atmospheric CO2 resulted in SOC increase at least 15%, while warming 5 ℃ and elevated CO2 resulted in SOC decrease more than 29%. SOC predictions with uncertainty assessment were conducted for different scenarios of soil erosion, climate change, and elevated CO2. Statistically, SOC decreased linearly with the probability. SOC also decreased with time and the degree of soil erosion. For example, in 2100 with a probability of 50%, SOC was 1 617, 1 167, and 892 g m^-2, respectively, for no, minimum, and maximum soil erosion. Under climate warming 5 ℃ and elevated CO2, the soil carbon pools became a carbon source to the atmosphere (P 〉 95%). The results suggested that stochastic modelling could be a useful tool to predict future SOC dynamics under uncertain climate change and elevated CO2.展开更多
The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on...The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.展开更多
文摘The objective of this study was to analyze the effects of climate change and doubled atmospheric CO2 concentrations, as well as the combined effects of climate change and doubling atmospheric CO2 concentrations on soil organic carbon (SOC) in the alpine steppe of the northern Tibetan Plateau using the CENTURY model. The results indicate that SOC loss in climate change scenarios varied from 49.77 52.36% in the top 20 cm. The simulation results obtained for a P1T0 scenario (increased precipitation and unchanged temperature), POT1 scenario (unchanged precipitation and increased temperature), and P1T1 scenario (increased precipitation and increased temperature) were similar. The alpine steppe in the P1T1 scenarios lost the greatest amount of SOC (844.40 g C m-2, representing the least amount of SOC) by the end of the simulation. The simulation for POT1 scenarios resulted in a 49.77% loss of SOC. However, SOC increased 12.87% under the COs doubling scenario, compared with the unchanged CO2 scenario. CO2 enhancement effects on SOC were greater than the climate change effects on SOC alone. The simulation of combined climate change and doubling atmospheric CO2 led to a decrease in SOC. This result indicated a decrease of 52.39% in SOC for the P1T1 + 2 × CO2 scenario, 49.81% for the POT1 + 2 ×CO2 scenario, and 52.30% for the P1T0 + 2 ×CO2 scenario over the next 50 years. Therefore, SOC content in the alpine steppe will change because of changes in precipitation, temperature and atmospheric CO2 concentrations.
基金Supported by the National Natural Science Foundation of China(Nos.51039007 and 51179212)the Fundamental Research Funds for the Central Universities
文摘Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC). SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different soil erosion extents at Nelson Farm during 1998-100 were simulated using stochastic modelling. Results based on numerous simulations showed that SOC decreased with elevated atmospheric temperature but increased with atmospheric CO2 concentration. Therefore, there was a counteract effect on SOC dynamics between climate warming and elevated CO2. For different soil erosion extents, warming 1℃ and elevated atmospheric CO2 resulted in SOC increase at least 15%, while warming 5 ℃ and elevated CO2 resulted in SOC decrease more than 29%. SOC predictions with uncertainty assessment were conducted for different scenarios of soil erosion, climate change, and elevated CO2. Statistically, SOC decreased linearly with the probability. SOC also decreased with time and the degree of soil erosion. For example, in 2100 with a probability of 50%, SOC was 1 617, 1 167, and 892 g m^-2, respectively, for no, minimum, and maximum soil erosion. Under climate warming 5 ℃ and elevated CO2, the soil carbon pools became a carbon source to the atmosphere (P 〉 95%). The results suggested that stochastic modelling could be a useful tool to predict future SOC dynamics under uncertain climate change and elevated CO2.
基金Supported by Science and Technology Program of Fujian Province(2017R1016-4)Natural Science Foundation of Fujian Province(2017J01072)
文摘The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.