期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于Boruta-支持向量回归的安徽省土壤pH值预测制图 被引量:10
1
作者 卢宏亮 赵明松 +2 位作者 刘斌寅 张平 陆龙妹 《地理与地理信息科学》 CSCD 北大核心 2019年第5期66-72,共7页
以安徽省为研究区域,将Boruta算法用于特征筛选,选择最优变量组合输入支持向量回归(SVR)模型,经参数优化和核函数对比后,选择最优的SVR预测模型进行土壤pH值空间分布制图。结果表明:1)使用Boruta算法筛选后的特征变量建模优于全部变量建... 以安徽省为研究区域,将Boruta算法用于特征筛选,选择最优变量组合输入支持向量回归(SVR)模型,经参数优化和核函数对比后,选择最优的SVR预测模型进行土壤pH值空间分布制图。结果表明:1)使用Boruta算法筛选后的特征变量建模优于全部变量建模;特征变量重要性分析表明,年均降水(MAP)是影响安徽省土壤pH值的最重要因素,多尺度山谷平坦指数(MrVBF)、多尺度山脊平坦指数(MrRTF)和年均温(MAT)等特征变量均对土壤pH值有较重要的影响。2)选择径向基函数(RBF)作为核函数建立SVR模型进行土壤pH值预测最为合理;参数C=1,γ=0.125时,SVR模型精度最高,可以解释土壤pH值变异的74%,验证集R^2为0.62。3)土壤pH值预测制图结果表明,安徽省土壤pH值空间分布呈由北至南逐渐降低的趋势,符合“南酸北碱”特征,且预测制图的统计结果与样本点的统计结果基本一致。将Boruta算法与SVR模型结合可以提高土壤pH值的预测制图精度,且模型的泛化能力较强。 展开更多
关键词 土壤ph值预测 Boruta算法 核函数 支持向量机回归 安徽省
下载PDF
神经网络模型在预测土壤pH值中的应用研究 被引量:4
2
作者 杨珏 汪德爟 《计算机仿真》 CSCD 2004年第4期121-124,161,共5页
该文通过对西藏察雅县 10 5层土样资料 (1988年 )建立CaCO3-pH神经网络模型 ,与刘世全等所做的回归模型在拟合精度和预测性能方面作了比较 ,结果显示 ,BP网络在拟合性能方面不亚于回归方法 ,在预测性能上要优于回归方法。该文对将神经... 该文通过对西藏察雅县 10 5层土样资料 (1988年 )建立CaCO3-pH神经网络模型 ,与刘世全等所做的回归模型在拟合精度和预测性能方面作了比较 ,结果显示 ,BP网络在拟合性能方面不亚于回归方法 ,在预测性能上要优于回归方法。该文对将神经网络引入土壤环境系统的研究中作了有意义的尝试 ;所建立CaCO3-pH间的关系模型 ,是研究污染物在土壤中的降解和转化的重要基础 ,对评价周边环境因素对土壤的综合作用也有重要意义。本文的结论说明 ,神经网络对于研究土壤系统的目标因子和相应的影响因子间的关系方面 ,是较为适用的数学手段。 展开更多
关键词 神经网络 土壤ph值预测 回归模型 拟合性能 CaCO3-ph
下载PDF
Study on Soil and Pine-Seedling Zn and Mn and Predicting-Model Design
3
作者 ZHANGJI-ZHEN J.G.JYER 《Pedosphere》 SCIE CAS CSCD 1992年第2期153-160,共8页
Soils were collected from 2-year (2-y) and 3-year (3-y) old red-pine seedling plots in two tree nurseries, Hayward in the north and Wilson in the southwestern part of Wisconsin State respectively, and equilibrated wit... Soils were collected from 2-year (2-y) and 3-year (3-y) old red-pine seedling plots in two tree nurseries, Hayward in the north and Wilson in the southwestern part of Wisconsin State respectively, and equilibrated with 0.01 M Ca(NO3)2 for soil solution Zn and Mn (solu-Zn and Mn), and with 0.01 M Ca(NO3)2+0.005 M EDTA for soil adsorbed Zn and Mn (ad-Zn and Mn). Buffering capacity of soil Zn and Mn (b-Zn and Mn) was obtained from the ratio of ad-Zn and Mn to the solu-Zn and Mn. The concerned traces in pine seedling needles (ndls), stems(sts) and roots (rts) were simultaneously measured. The results obtained show that:About 60% of solu- and ad- Zn ranged from 0.2 to 0.4 and from 1 to 2μ/g soil respectively. About 70% of b-Zn was within) 3-10.The highest content of solu-Zn compared with the lowest showed a discrepancy of more than 10-fold. The two forms of soil Zn were commonly higher in Wilson than in Hayward Nursery.About 80% of solu-, ad- and b-Mn were within 3-10, 5-5.8 μg/ g soil and 1-2 respectively. Influence of low buffering capacity on solu-Zn and Mn was about 20 times stronger than that of the high.The E-value, a ratio of accumulated Zn and Mn in needles to those in the soil solution, is proved to be: E-Zn > E-Mn;E-sts> E-ndls or E-rts; and E-2y > E-3y.Curvilinear and/ or linear correlations between soil solu-, ad- and b-Zn and Mn and ndls-, sts-, rts-Zn and Mn were at very significant or significant levels.For predicting ndls-Zn and Mn, two realizable and simple models from two regression equations were established through the selection of related parameters and dependent variables. Binary regression analysis basically eliminated the influence of soil pH on the prediction of Zn and Mn in needles. Soil pH was thus thought to be excluded from the model. 展开更多
关键词 MANGANESE predicting model red-pine seedling ZINC
下载PDF
Using Digital Elevation Model to Improve Soil pH Prediction in an Alpine Doline 被引量:1
4
作者 A. CASTRIGNANO G. BUTTAFUOCO +1 位作者 R. COMOLLI A. CASTRIGNANO 《Pedosphere》 SCIE CAS CSCD 2011年第2期259-270,共12页
Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled loc... Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations. 展开更多
关键词 kriging with external drift multi-collocated ordinary cokriging multi-linear regression ordinary kriging regression kriging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部