期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
水泥粉喷桩地基桩土应力分布研究 被引量:2
1
作者 杜建成 张利民 《地基处理》 1996年第4期8-11,共4页
本文通过离心模型试验,对广州地铁广钢站无承台水泥粉喷桩复合地基中的桩土应力进行分析。结果表明,桩距一定时,增大外加荷载,桩土应力比有所降低,但变化不大;当外加荷载不变时,随着桩距的增加,桩土应力比提高且幅度较大。
关键词 水泥粉喷桩 土应力分布 桩基
下载PDF
预应力锚索格构梁作用下边坡土中应力分布的室内模型试验研究 被引量:12
2
作者 刘晶晶 赵其华 +2 位作者 彭社琴 马迎娟 张文居 《水文地质工程地质》 CAS CSCD 北大核心 2006年第4期9-12,共4页
预应力锚索格构梁由于其多方面的优点而在工程中得到了广泛的应用。但到目前为止,对预应力锚索格构梁的设计计算还没有提出一个合理的计算模型。本文针对现有计算模型对格梁底部地基反力的分布假设的不足,进行了预应力锚索格构梁的室内... 预应力锚索格构梁由于其多方面的优点而在工程中得到了广泛的应用。但到目前为止,对预应力锚索格构梁的设计计算还没有提出一个合理的计算模型。本文针对现有计算模型对格梁底部地基反力的分布假设的不足,进行了预应力锚索格构梁的室内模型试验,并对格梁底部土体应力的实际分布情况进行了分析。分析结果显示,土中应力随锚索预应力的增大而增大,且格梁底部的基底反力并非成直线或线性变化,而是与所加锚索的位置有关,因此不能简单地将格构梁看成刚性梁。最后,就本模型试验所存在的不足对今后的研究方向提出了几点建议。 展开更多
关键词 应力锚索格构梁 模型试验 土应力分布
下载PDF
Lateral displacement of silty clay under cement-fly ash-gravel pile-supported embankments: Analytical consideration and field evidence 被引量:5
3
作者 张崇磊 蒋关鲁 +1 位作者 刘先峰 王智猛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1477-1489,共13页
Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankme... Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen. 展开更多
关键词 piled-supported embankment silty clay lateral displacement field test stress concentration ratio
下载PDF
Effect of insufficient tunnel crown thickness on the post-tensioned concrete lining of the Yellow River Crossing Tunnel and its strengthening schemes 被引量:2
4
作者 Qin Gan Cao Shengrong +1 位作者 Lai Xu Yang Fan 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期356-363,共8页
The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformation... The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformations and circumferential stresses of the post-tensioned concrete inner lining with the gradual decrease of the tunnel crown thickness were compared, and the potential bearing risk of insufficient tunnel crown thickness for the Yellow River Crossing Tunnel was revealed. Based on the finite element calculation results of circumferential stresses under different defective cases, the corresponding reinforcement schemes were proposed. The calculation results show that the inner lining can still maintain a satisfactory stress state when the tunnel crown thickness is equal to or greater than 0. 28 m. When the tunnel crown thickness decreases below 0.28 m, the external surface of the crown and internal surface of the crown's adjacent areas may be under tension. The tension stresses will incrementally increase and ultimately exceed the tensile strength of the inner lining concrete as the tunnel crown thickness further decreases gradually. Then, the Yellow River Crossing Tunnel cannot operate normally, and severe cracking, leaking or even failure may occur. When the tunnel crown thickness is equal to or greater than 0.28 m, the reinforcement suggestions are that the void spaces between the inner lining and the outer lining should be back-filled with concrete. When the tunnel crown thickness is less than 0. 28 m, the inner lining should be reinforced by steel plates after concrete back-filling. 展开更多
关键词 post-tensioned concrete linings runnel crownthickness stress redistribution finite element analysis tunnelreinforcement Yellow River Crossing Tunnel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部