Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axi...Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder.展开更多
The pullout testing of geosynthetics is essential for studying interface interaction in the soil-reinforcement system. In this paper, a new method for testing interface properties of geotextiles is proposed. The inter...The pullout testing of geosynthetics is essential for studying interface interaction in the soil-reinforcement system. In this paper, a new method for testing interface properties of geotextiles is proposed. The interface frictional characters of two kinds of geotextiles (woven and needle-punched nonwoven) are investigated through pullout test. Nonwoven specimen has more wide variety of displacement along length than that of woven under the same pressure because of their different extensibility. The greater the elongation and deformation of specimens, the more evident the variations of displacement along reinforcement from front to pullout end. The greater the normal pressure, the smaller the displacement of every position along length with the same pullout load. The study focuses on the effects of the tensile modulus and the difference of pullout response between woven and nonwoven geotextiles.展开更多
To investigate the residual strength of concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. 80 100mm×100mm×100m...To investigate the residual strength of concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. 80 100mm×100mm×100mm specimens of plain concrete were tested under uniaxial compressive fatigue loading. Based on probability distribution of the residual strength of concrete under fatigue loading, the empirical expressions of the residual strength corresponding to the number of cycles were obtained. There is a good correlation between residual strength and residual secant elastic modulus. Thus the relationship between residual secant elastic modulus and the number of cycles is established. A damage variable based on the longitudinal maximum strain is defined, and a good linearity relationship between residual strength and damage is found out.展开更多
We prepared cold-setting cement with metakaolin from kaolin dehydrated at 800 ℃ and phosphate, and studied the phase composition, microstructure and setting reaction mechanism of the cementing material by means of in...We prepared cold-setting cement with metakaolin from kaolin dehydrated at 800 ℃ and phosphate, and studied the phase composition, microstructure and setting reaction mechanism of the cementing material by means of infrared spectroscopy, thermogravimetry, X-ray diffraction, and scanning electron microscopy. The metakaolin-phosphate cement is predominantly amorphous, where the phases responsible for chemical setting are mainly amorphous aluminophosphate hydrates. The reactivity of metakaolin depends on the particle size. Metakaolin particles of 1.75 μm in D50 have an acid dissolution index up to 18.45%, and the reaction with phosphate at room temperature to form metakaolin-phosphate cement takes only 6 h. The so obtained cement shows a compressive strength of 92.5 MPa after 7 d and keeps its amorphous phase at 1 000 ℃, demonstrating better bonding and mechanical properties and higher stability at a medium or high temperature.展开更多
The spallation of the concrete slabs or walls resulting from contact detonation constitutes risk to the personnel and equipment inside the structures because of the high speed concrete fragments even though the overal...The spallation of the concrete slabs or walls resulting from contact detonation constitutes risk to the personnel and equipment inside the structures because of the high speed concrete fragments even though the overall structures or structural members are not destroyed completely. Correctly predicting the damage caused by any potential contact detonation can lead to better fortification design to withstand the blast Ioadings. It is therefore of great significance to study the mechanism involved in the spallation of concrete slabs and walls. Existing studies on this topic often employ simplified material models and 1D wave analysis, which cannot reproduce the realistic response in the spallation process. Numerical simulations are therefore carried out under different contact blast Ioadings in the free air using LS-DYNA. Sophisticated concrete and reinforcing bar material models are adopted, taking into account the strain rate effect on both tension and compression. The erosion technique is used to model the fracture and failure of materials under tensile stress. Full processes of the deformation and dynamic damage of reinforced concrete (RC) slabs and plain concrete slabs are thus observed realistically. It is noted that with the increase of quantity of explosive, the dimensions of damage crater increase and the slabs experience four different damage patterns, namely explosive crater, spalling, perforation, and punching. Comparison between the simulation results of plain concrete slabs and those of RC slabs show that reinforcing bars can enhance the integrity and shearing resistance of the slabs to a certain extent, and meanwhile attenuate the ejection velocity and decrease the size of the concrete fragments. Therefore, optimizing reinforcement arrangement can improve the anti-spallation capability of the slabs and walls to a certain extent.展开更多
Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member wa...Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member was proposed. The post-cracking behavior as well as tension stiffening effect was considered in the new model. The relative slip of bending member could also be determined through the extension of the new model,which could be applied to obtaining the concentrated rotations at certain sections in order to predict the flexural deformation of RC beam. Several examples of four-point bending RC beams were approached to verify the new model,and the predictions of the flexural deflections of RC beams agreed well with experimental results. The new model can be extended to the application of partially corroded RC beam.展开更多
This paper reports and evaluates the subsurface investigations of lateritic soil in Muglad Basin. Lateritic soil is described as highly weathered and altered residual/transported soil formed by the in-situ weathering ...This paper reports and evaluates the subsurface investigations of lateritic soil in Muglad Basin. Lateritic soil is described as highly weathered and altered residual/transported soil formed by the in-situ weathering and/or decomposition of rocks in the tropical and sub-tropical regions with hot, humid climatic conditions. The field works include excavation of test pits, drilling of boreholes and performing of SRT (standard penetration test). The engineering properties of soil such as sieve analysis, consistency, compaction test, CBR (California bearing ratio) test are deduced in the laboratory. Lateritic soil is also evaluated to be used as foundation and construction materials. Concretionary lateritic soil is valuable road pavement materials, widely used in the tropics as sub-base, base material and for gravel roads. The term laterite, however, has tended to be indiscriminately applied in tropical highway engineering to any red soil. Lateritic soils in this study area were classified as reddish brown, medium dense to very dense, clayey silty sand with noodles of quartz and gravels. According to laboratory test, the lateritic soil was found to be good as construction materials, and can be used for embankment purposes; on the other hand, blending such materials with gravels can improve the low CBR values.展开更多
The Centennial Hall was designed as a monumental building entirely of reinforced concrete. Soon it became a model for modernist buildings of that era. During the years 2009-2011, the biggest renovation since its compl...The Centennial Hall was designed as a monumental building entirely of reinforced concrete. Soon it became a model for modernist buildings of that era. During the years 2009-2011, the biggest renovation since its completion took place. All activities described in the following paper aimed to put the Centennial Hall into good repair and adjust it to the applicable requirements of modem public buildings. The primary aim is to preserve the authenticity of the original materials used in construction through the use of remedial technologies, thereby maintaining the historical integrity of the building.展开更多
The main purpose of this research is to study the mechanical properties of lightweight concrete through the using of different types of lightweight aggregate. Three types of lightweight aggregate were used in this stu...The main purpose of this research is to study the mechanical properties of lightweight concrete through the using of different types of lightweight aggregate. Three types of lightweight aggregate were used in this study for the production of lightweight concrete. These types are red block aggregate, red ceramic aggregate and white thermostone aggregate. All these types have been brought from construction waste. A comparison of the properties of lightweight concrete with normal concrete is the most important goal of this study. The most important properties of concrete, which were compared with each other is compressive strength, static modulus of elasticity, splitting tensile strength and slump flow.展开更多
Bamboo reinforced concrete as a building material is expected to be an alternative to steel reinforced concrete. Due to the fact that steel is not renewable and polluting steel mills are fairly high. The bond strength...Bamboo reinforced concrete as a building material is expected to be an alternative to steel reinforced concrete. Due to the fact that steel is not renewable and polluting steel mills are fairly high. The bond strength is a major concern for the natural fiber used as reinforcement in structural composites. This paper reports study on the bond strength of bamboo reinforcement in concrete, to determine the adhesion reinforcement in concrete often do by the pull-out test. The research objective was bond strength of lightweight concrete and bamboo reinforcement. The test used light weight concrete with foam additives klerak. Bamboo slats were coated with paint and sprinkled with sand. The results obtained showed that the bond strength bamboo 60% of the bond strength steel.展开更多
Facing the innovation technology in building construction, the designer has the option in selecting the type of system construction and building materials. There is a big question for the designer and owner on how to ...Facing the innovation technology in building construction, the designer has the option in selecting the type of system construction and building materials. There is a big question for the designer and owner on how to evaluate the quality material to meet the technical requirements as building construction reliability. By demand to provide a low cost house, there is need for improving structure model and material construction for residents. When material cost takes 60%-70% of total construction cost, it is important to select the appropriate building material. Currently the innovation of material building for main frame and wall component has present for residential projects in Indonesia. Attempt to replace the traditional material such as brick or pozzolan lime concrete block is developed a new material include utilization of coal combustion waste for concrete block, lightweight concrete, or prefab panel wall. This paper presents the research result to develop a tool support for material and system construction selecting that facilitates the selection an optimal material for a simple house construction. A multi-criteria decision method is used based on performance criteria such as economy, reliability, comfort and eco-friend.展开更多
1920s and 1930s architecture has often been associated with the use of modern materials, such as reinforced concrete, glass and steel, mainly thanks to the role given them by the historiography of the modern, of prese...1920s and 1930s architecture has often been associated with the use of modern materials, such as reinforced concrete, glass and steel, mainly thanks to the role given them by the historiography of the modern, of presenting a break with former tradition and of spreading the need of architectural renewal. The study of architecture from the point of view of construction techniques evidences, instead, how architectural renewal started earlier, during the 19 century and involved the whole realm of building, even tradition-associated materials, such as wood and stone. Indeed, artificial stone (which appeared in early 19 century) represents--above all in France--a link between traditional construction in stone and the newborn reinforced-concrete technique, so as to underline the gradual shift from 19 century construction codes to the new industrial construction techniques, which in the 1920s and 1930s tend to overlap and blend, in this way determining a material continuity of modern and 19 century architecture.展开更多
基金Supported by Arm Equipment Exploration Project(No.6130516).
文摘Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder.
文摘The pullout testing of geosynthetics is essential for studying interface interaction in the soil-reinforcement system. In this paper, a new method for testing interface properties of geotextiles is proposed. The interface frictional characters of two kinds of geotextiles (woven and needle-punched nonwoven) are investigated through pullout test. Nonwoven specimen has more wide variety of displacement along length than that of woven under the same pressure because of their different extensibility. The greater the elongation and deformation of specimens, the more evident the variations of displacement along reinforcement from front to pullout end. The greater the normal pressure, the smaller the displacement of every position along length with the same pullout load. The study focuses on the effects of the tensile modulus and the difference of pullout response between woven and nonwoven geotextiles.
文摘To investigate the residual strength of concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. 80 100mm×100mm×100mm specimens of plain concrete were tested under uniaxial compressive fatigue loading. Based on probability distribution of the residual strength of concrete under fatigue loading, the empirical expressions of the residual strength corresponding to the number of cycles were obtained. There is a good correlation between residual strength and residual secant elastic modulus. Thus the relationship between residual secant elastic modulus and the number of cycles is established. A damage variable based on the longitudinal maximum strain is defined, and a good linearity relationship between residual strength and damage is found out.
基金Fankou Cement Company Limited, Dachang Construction Materials under the Contract No. 2004440003050237.
文摘We prepared cold-setting cement with metakaolin from kaolin dehydrated at 800 ℃ and phosphate, and studied the phase composition, microstructure and setting reaction mechanism of the cementing material by means of infrared spectroscopy, thermogravimetry, X-ray diffraction, and scanning electron microscopy. The metakaolin-phosphate cement is predominantly amorphous, where the phases responsible for chemical setting are mainly amorphous aluminophosphate hydrates. The reactivity of metakaolin depends on the particle size. Metakaolin particles of 1.75 μm in D50 have an acid dissolution index up to 18.45%, and the reaction with phosphate at room temperature to form metakaolin-phosphate cement takes only 6 h. The so obtained cement shows a compressive strength of 92.5 MPa after 7 d and keeps its amorphous phase at 1 000 ℃, demonstrating better bonding and mechanical properties and higher stability at a medium or high temperature.
基金Supported by the National Defense Preliminary Research Project Fund of Zhejiang University,and Qianjiang Talent Plan.
文摘The spallation of the concrete slabs or walls resulting from contact detonation constitutes risk to the personnel and equipment inside the structures because of the high speed concrete fragments even though the overall structures or structural members are not destroyed completely. Correctly predicting the damage caused by any potential contact detonation can lead to better fortification design to withstand the blast Ioadings. It is therefore of great significance to study the mechanism involved in the spallation of concrete slabs and walls. Existing studies on this topic often employ simplified material models and 1D wave analysis, which cannot reproduce the realistic response in the spallation process. Numerical simulations are therefore carried out under different contact blast Ioadings in the free air using LS-DYNA. Sophisticated concrete and reinforcing bar material models are adopted, taking into account the strain rate effect on both tension and compression. The erosion technique is used to model the fracture and failure of materials under tensile stress. Full processes of the deformation and dynamic damage of reinforced concrete (RC) slabs and plain concrete slabs are thus observed realistically. It is noted that with the increase of quantity of explosive, the dimensions of damage crater increase and the slabs experience four different damage patterns, namely explosive crater, spalling, perforation, and punching. Comparison between the simulation results of plain concrete slabs and those of RC slabs show that reinforcing bars can enhance the integrity and shearing resistance of the slabs to a certain extent, and meanwhile attenuate the ejection velocity and decrease the size of the concrete fragments. Therefore, optimizing reinforcement arrangement can improve the anti-spallation capability of the slabs and walls to a certain extent.
基金National Key Basic Research and Development Program(973Program),China(No.2002CB412709)
文摘Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member was proposed. The post-cracking behavior as well as tension stiffening effect was considered in the new model. The relative slip of bending member could also be determined through the extension of the new model,which could be applied to obtaining the concentrated rotations at certain sections in order to predict the flexural deformation of RC beam. Several examples of four-point bending RC beams were approached to verify the new model,and the predictions of the flexural deflections of RC beams agreed well with experimental results. The new model can be extended to the application of partially corroded RC beam.
文摘This paper reports and evaluates the subsurface investigations of lateritic soil in Muglad Basin. Lateritic soil is described as highly weathered and altered residual/transported soil formed by the in-situ weathering and/or decomposition of rocks in the tropical and sub-tropical regions with hot, humid climatic conditions. The field works include excavation of test pits, drilling of boreholes and performing of SRT (standard penetration test). The engineering properties of soil such as sieve analysis, consistency, compaction test, CBR (California bearing ratio) test are deduced in the laboratory. Lateritic soil is also evaluated to be used as foundation and construction materials. Concretionary lateritic soil is valuable road pavement materials, widely used in the tropics as sub-base, base material and for gravel roads. The term laterite, however, has tended to be indiscriminately applied in tropical highway engineering to any red soil. Lateritic soils in this study area were classified as reddish brown, medium dense to very dense, clayey silty sand with noodles of quartz and gravels. According to laboratory test, the lateritic soil was found to be good as construction materials, and can be used for embankment purposes; on the other hand, blending such materials with gravels can improve the low CBR values.
文摘The Centennial Hall was designed as a monumental building entirely of reinforced concrete. Soon it became a model for modernist buildings of that era. During the years 2009-2011, the biggest renovation since its completion took place. All activities described in the following paper aimed to put the Centennial Hall into good repair and adjust it to the applicable requirements of modem public buildings. The primary aim is to preserve the authenticity of the original materials used in construction through the use of remedial technologies, thereby maintaining the historical integrity of the building.
文摘The main purpose of this research is to study the mechanical properties of lightweight concrete through the using of different types of lightweight aggregate. Three types of lightweight aggregate were used in this study for the production of lightweight concrete. These types are red block aggregate, red ceramic aggregate and white thermostone aggregate. All these types have been brought from construction waste. A comparison of the properties of lightweight concrete with normal concrete is the most important goal of this study. The most important properties of concrete, which were compared with each other is compressive strength, static modulus of elasticity, splitting tensile strength and slump flow.
文摘Bamboo reinforced concrete as a building material is expected to be an alternative to steel reinforced concrete. Due to the fact that steel is not renewable and polluting steel mills are fairly high. The bond strength is a major concern for the natural fiber used as reinforcement in structural composites. This paper reports study on the bond strength of bamboo reinforcement in concrete, to determine the adhesion reinforcement in concrete often do by the pull-out test. The research objective was bond strength of lightweight concrete and bamboo reinforcement. The test used light weight concrete with foam additives klerak. Bamboo slats were coated with paint and sprinkled with sand. The results obtained showed that the bond strength bamboo 60% of the bond strength steel.
文摘Facing the innovation technology in building construction, the designer has the option in selecting the type of system construction and building materials. There is a big question for the designer and owner on how to evaluate the quality material to meet the technical requirements as building construction reliability. By demand to provide a low cost house, there is need for improving structure model and material construction for residents. When material cost takes 60%-70% of total construction cost, it is important to select the appropriate building material. Currently the innovation of material building for main frame and wall component has present for residential projects in Indonesia. Attempt to replace the traditional material such as brick or pozzolan lime concrete block is developed a new material include utilization of coal combustion waste for concrete block, lightweight concrete, or prefab panel wall. This paper presents the research result to develop a tool support for material and system construction selecting that facilitates the selection an optimal material for a simple house construction. A multi-criteria decision method is used based on performance criteria such as economy, reliability, comfort and eco-friend.
文摘1920s and 1930s architecture has often been associated with the use of modern materials, such as reinforced concrete, glass and steel, mainly thanks to the role given them by the historiography of the modern, of presenting a break with former tradition and of spreading the need of architectural renewal. The study of architecture from the point of view of construction techniques evidences, instead, how architectural renewal started earlier, during the 19 century and involved the whole realm of building, even tradition-associated materials, such as wood and stone. Indeed, artificial stone (which appeared in early 19 century) represents--above all in France--a link between traditional construction in stone and the newborn reinforced-concrete technique, so as to underline the gradual shift from 19 century construction codes to the new industrial construction techniques, which in the 1920s and 1930s tend to overlap and blend, in this way determining a material continuity of modern and 19 century architecture.