Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with stron...Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with strong randomness.In this paper,the working mechanism of earthwork dynamic allocation system is analyzed comprehensively and a solution to fuzzy earthwork dynamic allocation is proposed on the basis of uncertain factors in the earthwork allocation of a hydropower project.Under the premise of actual situation and the experience of the construction site,an all-coefficient-fuzzy linear programming mathematical model with fuzzy parameters and constraints for earthwork allocation is established according to the structure unit weighted ranking criteria.In this way,the deficiency of certain allocation model can be overcome.The application results indicate that the proposed method is more rational compared with traditional earthwork allocation.展开更多
Elovich, parabolic diffusion, power function and exponential equations were used to describe K desorptionkinetics of 12 soils in a constant electric field of electro-ultrafiltration (EUF). Results showed that the Elov...Elovich, parabolic diffusion, power function and exponential equations were used to describe K desorptionkinetics of 12 soils in a constant electric field of electro-ultrafiltration (EUF). Results showed that the Elovich,parabolic diffusion and power function equations could describe K desorption kinetics well owing to their highcorrelatfon coefficients and low standard errors; but the exponential equation was not suitable to be usedin this study due to its relatively low correlation coefficients and relatively high standard errors. This workestablished successfully the relationships between the constants (slope or intercept) of kinetic equations andthe barley responses to K fertilizer in the multiple-site field experiments and K-supplying status of soils, theconstants of Elovich, parabolic diffusion and power function equations were very significantly or significantlycorrelated to the soil available K, relative yield of barley and K uptake of barley in NP plot. It was suggestedthat the kinetic equation constants could be used to estimate K-supplying power of soils.展开更多
The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in th...The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives.展开更多
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with strong randomness.In this paper,the working mechanism of earthwork dynamic allocation system is analyzed comprehensively and a solution to fuzzy earthwork dynamic allocation is proposed on the basis of uncertain factors in the earthwork allocation of a hydropower project.Under the premise of actual situation and the experience of the construction site,an all-coefficient-fuzzy linear programming mathematical model with fuzzy parameters and constraints for earthwork allocation is established according to the structure unit weighted ranking criteria.In this way,the deficiency of certain allocation model can be overcome.The application results indicate that the proposed method is more rational compared with traditional earthwork allocation.
文摘Elovich, parabolic diffusion, power function and exponential equations were used to describe K desorptionkinetics of 12 soils in a constant electric field of electro-ultrafiltration (EUF). Results showed that the Elovich,parabolic diffusion and power function equations could describe K desorption kinetics well owing to their highcorrelatfon coefficients and low standard errors; but the exponential equation was not suitable to be usedin this study due to its relatively low correlation coefficients and relatively high standard errors. This workestablished successfully the relationships between the constants (slope or intercept) of kinetic equations andthe barley responses to K fertilizer in the multiple-site field experiments and K-supplying status of soils, theconstants of Elovich, parabolic diffusion and power function equations were very significantly or significantlycorrelated to the soil available K, relative yield of barley and K uptake of barley in NP plot. It was suggestedthat the kinetic equation constants could be used to estimate K-supplying power of soils.
文摘The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives.