Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REE...Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.展开更多
The aim of this work was to study the influence of phosphate and citrate, which are common inorganic and organic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separated fr...The aim of this work was to study the influence of phosphate and citrate, which are common inorganic and organic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separated from yellow-brown soil (YBS) and latosol (LS) in central-south China. The YBS colloid has the major clay mineral composition of 1.4 nm mineral, illite and kaolinite while the LS colloid mainly contains kaolinite and oxides. The adsorption isotherm of acid phosphatase on the examined soil colloids and minerals fitted to the Langmuir model. The amount of enzyme adsorbed in the absence of ligands was in the order of YBS colloid > LS colloid > kaolin ≈ goethite. In the presence of phosphate or citrate, the amounts of the enzyme adsorbed followed the sequence YBS colloid > kaolin > LS colloid > goethite. The presence of ligands also decreased the binding energy between the enzyme and soil colloids or minerals. With the increase of ligand concentration from 10 mmol L-1 to 400 m mol L-1, different behaviors for the adsorption of enzyme were found in the colloid and mineral systems studied. A sharp decrease in enzyme adsorption was observed on goethite while gradual decreases of enzyme adsorption were recorded in the two soil colloid systems. However, no any decrease was found for the amount of enzyme adsorbed on kaolin at higher ligand concentrations. When phosphate or citrate was introduced to the system before the addition of enzyme, the ligands usually enhanced the adsorption of enzyme. The results obtained in this study suggested the important role of kaolinite mineral in the adsorption of enzyme molecules in acidic soils in the presence of various ligands.展开更多
Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediati...Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation. This study aimed at investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by El-sholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining]. The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78 mg/kg in MS and from 0.26 to 15.72 mg/kg in PS, and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control. There was no significant difference between the treatment with 5.0 mmol/kg EDTA and that with 2.5 mmol/kg EDTA, probably because that 2.5 mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level. As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E. splendens in polluted soils.展开更多
The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concen...The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.展开更多
INTRODUCTION In recent 10 years,citrus production has developed rapidly in China.The citrus-cul-tivated area of our country is among the largest and its yield occupies the third place inthe world(Shen,1991).However,in...INTRODUCTION In recent 10 years,citrus production has developed rapidly in China.The citrus-cul-tivated area of our country is among the largest and its yield occupies the third place inthe world(Shen,1991).However,in some of our citrus-producing areas the yield is onthe low side and the sugar content of the fruit tends to reduce.The“mosaic”-a physio-展开更多
Citric acid was used to selectively extract cobalt from limonite-type laterite ores in the presence of ammonium bifluoride.The results show that ammonium bifluoride enhances the leaching of cobalt by citric acid,and 8...Citric acid was used to selectively extract cobalt from limonite-type laterite ores in the presence of ammonium bifluoride.The results show that ammonium bifluoride enhances the leaching of cobalt by citric acid,and 84.5% cobalt is extracted from a laterite ore containing 0.13% Co when leached at ambient temperature for 2 h with 30 g/L citric acid and 10 g/L ammonium bifluoride.Pyrolusite is reduced by citric acid during leaching,cobalt intergrown with which is liberated and subsequently chelated by the citric acid.The extraction of cobalt is enhanced in the presence of ammonium bifluoride because the matrix of silicate minerals is destroyed by ammonium bifluoride and the adsorbed cobalt is subsequently liberated.展开更多
Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abunda...Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abundance and deficiency of available micronutrients in these soils was made in this paper.In southern China,citrus orchard soils derived from sandstone,sandy shale,Quaternary red clay,diluvial deposit,granite gneiss and neritic deposit were deficient in available Mo and B and low in Zn.Those developed on purple sandy shale,limestone and slope deposit were all in short supply of available Zn,B and Mo.Coastal solonchak was fairly abundant in B,but its available Fe,Zn and Mo contents were rather low.展开更多
文摘Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.
基金Project supported by the National Natural Science Foundation of China (No. 49601011)by the International Foundation for Science (IFS, No. C/2527-1).
文摘The aim of this work was to study the influence of phosphate and citrate, which are common inorganic and organic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separated from yellow-brown soil (YBS) and latosol (LS) in central-south China. The YBS colloid has the major clay mineral composition of 1.4 nm mineral, illite and kaolinite while the LS colloid mainly contains kaolinite and oxides. The adsorption isotherm of acid phosphatase on the examined soil colloids and minerals fitted to the Langmuir model. The amount of enzyme adsorbed in the absence of ligands was in the order of YBS colloid > LS colloid > kaolin ≈ goethite. In the presence of phosphate or citrate, the amounts of the enzyme adsorbed followed the sequence YBS colloid > kaolin > LS colloid > goethite. The presence of ligands also decreased the binding energy between the enzyme and soil colloids or minerals. With the increase of ligand concentration from 10 mmol L-1 to 400 m mol L-1, different behaviors for the adsorption of enzyme were found in the colloid and mineral systems studied. A sharp decrease in enzyme adsorption was observed on goethite while gradual decreases of enzyme adsorption were recorded in the two soil colloid systems. However, no any decrease was found for the amount of enzyme adsorbed on kaolin at higher ligand concentrations. When phosphate or citrate was introduced to the system before the addition of enzyme, the ligands usually enhanced the adsorption of enzyme. The results obtained in this study suggested the important role of kaolinite mineral in the adsorption of enzyme molecules in acidic soils in the presence of various ligands.
文摘Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation. This study aimed at investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by El-sholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining]. The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78 mg/kg in MS and from 0.26 to 15.72 mg/kg in PS, and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control. There was no significant difference between the treatment with 5.0 mmol/kg EDTA and that with 2.5 mmol/kg EDTA, probably because that 2.5 mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level. As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E. splendens in polluted soils.
基金Projects(51708377,51678311)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by the Natural Science Foundation of Jiangsu Province,China+6 种基金Project(2016M591756)supported by the China Postdoctoral Science FoundationProject(17KJB560008)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(1601175C)supported by the Jiangsu Planned Projects for Postdoctoral Research Funds,ChinaProject(2016ZD18)supported by the Jiangsu Provincial Department of Housing and Urban-Rural Development,ChinaProject(2016T05)supported by the Jiangsu Provincial Transport Bureau,ChinaProject(2017A610304)supported by the Natural Science Foundation of Ningbo City,ChinaProject supported by the Bureau of Housing and Urban-Rural Development of Suzhou,China
文摘The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.
文摘INTRODUCTION In recent 10 years,citrus production has developed rapidly in China.The citrus-cul-tivated area of our country is among the largest and its yield occupies the third place inthe world(Shen,1991).However,in some of our citrus-producing areas the yield is onthe low side and the sugar content of the fruit tends to reduce.The“mosaic”-a physio-
基金Project(50725416) supported by the National Natural Science Foundation of China for Distinguished Young Scholars
文摘Citric acid was used to selectively extract cobalt from limonite-type laterite ores in the presence of ammonium bifluoride.The results show that ammonium bifluoride enhances the leaching of cobalt by citric acid,and 84.5% cobalt is extracted from a laterite ore containing 0.13% Co when leached at ambient temperature for 2 h with 30 g/L citric acid and 10 g/L ammonium bifluoride.Pyrolusite is reduced by citric acid during leaching,cobalt intergrown with which is liberated and subsequently chelated by the citric acid.The extraction of cobalt is enhanced in the presence of ammonium bifluoride because the matrix of silicate minerals is destroyed by ammonium bifluoride and the adsorbed cobalt is subsequently liberated.
文摘Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abundance and deficiency of available micronutrients in these soils was made in this paper.In southern China,citrus orchard soils derived from sandstone,sandy shale,Quaternary red clay,diluvial deposit,granite gneiss and neritic deposit were deficient in available Mo and B and low in Zn.Those developed on purple sandy shale,limestone and slope deposit were all in short supply of available Zn,B and Mo.Coastal solonchak was fairly abundant in B,but its available Fe,Zn and Mo contents were rather low.