The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considerin...The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure.展开更多
The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guarante...The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.展开更多
The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environment-friendly design. The ...The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environment-friendly design. The case study bridge used in this work was also investigated in a previous paper focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive LCA (life cycle assessment) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements yet of a higher concrete class, while cost optimization by considering extra constructability factors provided thicker sections and easier to construct. This dissimilarity in the results highlights the importance of combining environmental impact (and its associated environmental cost) and investment cost to find more material-efficient, economical, sustainable and time-effective bridge solutions.展开更多
文摘The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure.
文摘The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.
文摘The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environment-friendly design. The case study bridge used in this work was also investigated in a previous paper focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive LCA (life cycle assessment) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements yet of a higher concrete class, while cost optimization by considering extra constructability factors provided thicker sections and easier to construct. This dissimilarity in the results highlights the importance of combining environmental impact (and its associated environmental cost) and investment cost to find more material-efficient, economical, sustainable and time-effective bridge solutions.