The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the charact...The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the characteristics of the rock filling materials, such as settlement, pressure change and response waveform, were measured by the dynamic earth pressure gauge and aceelerometer. Moreover, a new method for detecting the compactness of the rock filling embankment was proposed based on the maximum dry density and modulus of deformation. The results show that the process of vibration compaction includes compact, elastic deformation and loose stages, and the vibratory pressure transfers to the surroundings from the vibration center in non-linear rule. Furthermore, the test results obtained by the present method are basically in agreement with those obtained by the traditional method, and the maximum relative error between them is about 0.5%.展开更多
Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankme...Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.展开更多
基金Project (50708033) supported by the National Natural Science Foundation of ChinaProject (20070532067) supported by Doctoral Foundation of Ministry of Education of China
文摘The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the characteristics of the rock filling materials, such as settlement, pressure change and response waveform, were measured by the dynamic earth pressure gauge and aceelerometer. Moreover, a new method for detecting the compactness of the rock filling embankment was proposed based on the maximum dry density and modulus of deformation. The results show that the process of vibration compaction includes compact, elastic deformation and loose stages, and the vibratory pressure transfers to the surroundings from the vibration center in non-linear rule. Furthermore, the test results obtained by the present method are basically in agreement with those obtained by the traditional method, and the maximum relative error between them is about 0.5%.
基金Project(2010G003-F)supported by Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.