Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure ...Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before cracking. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in oractice.展开更多
This paper presents a study carried out on infilled reinforced concrete beams for sustainable construction. In reinforced concrete beams, less stressed concrete below neutral axis can be replaced by some light weight ...This paper presents a study carried out on infilled reinforced concrete beams for sustainable construction. In reinforced concrete beams, less stressed concrete below neutral axis can be replaced by some light weight material to reduce the weight of the structure and also achieve the economy. The used infilled material is brick. Sustainability can be achieved by replacing the partially used concrete. By saving concrete, the authors save cement, which reduces the green house gases emissions. So it is considered as environment friendly. Since infilled beam acts like a layered member, there needs a theory to analyze it. Method of initial functions is used for the analysis of the infilled RC (reinforced concrete) beams. This method is successfully applied on infilled beam. Results show that physical conditions are verified for infilled beam.展开更多
文摘Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before cracking. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in oractice.
文摘This paper presents a study carried out on infilled reinforced concrete beams for sustainable construction. In reinforced concrete beams, less stressed concrete below neutral axis can be replaced by some light weight material to reduce the weight of the structure and also achieve the economy. The used infilled material is brick. Sustainability can be achieved by replacing the partially used concrete. By saving concrete, the authors save cement, which reduces the green house gases emissions. So it is considered as environment friendly. Since infilled beam acts like a layered member, there needs a theory to analyze it. Method of initial functions is used for the analysis of the infilled RC (reinforced concrete) beams. This method is successfully applied on infilled beam. Results show that physical conditions are verified for infilled beam.