The influence of heat treatment on the corrosion behavior of rolled Mg5 Gd alloys in 3.5 wt.% Na Cl solution saturated with Mg(OH)2 was characterized by immersion test, electrochemical test, scanning electrochemical m...The influence of heat treatment on the corrosion behavior of rolled Mg5 Gd alloys in 3.5 wt.% Na Cl solution saturated with Mg(OH)2 was characterized by immersion test, electrochemical test, scanning electrochemical microscopy(SECM) and corrosion morphology analysis in order to improve the corrosion resistance of Mg alloys. The results showed that solution treatment reduced the corrosion rate of the Mg5 Gd significantly, resulting in relatively uniform corrosion and shallow corrosion cavities due to the dissolution of Cd-containing particles. The following aging process could further decrease the corrosion rate. Precipitation of nano-sized Cd-containing particles did not cause apparent micro-galvanic corrosion, which could be attributed to the formation of a protective corrosion product film fully covering the particles.展开更多
The Tibet Plateau, occupying the main part of Qinghai-Tibet Plateau and having an average altitude of 4 500 m, has geomorphological features that are unique in the world, with soil erosion being one of the main ecolog...The Tibet Plateau, occupying the main part of Qinghai-Tibet Plateau and having an average altitude of 4 500 m, has geomorphological features that are unique in the world, with soil erosion being one of the main ecological problems. Thus the main objectives of the present research were to set up an efficient and simple way of evaluating spatial distribution of soil erosion sensitivity in the Tibet Plateau as well as the responses of soil erosion to changes of natural environmental conditions, and to indicate key regions where soil erosion should be preferentially controlled. Based on the Universal Soil Loss Equation (USLE), the study applied geographic information system (GIS) technology to develop a methodological reference framework, from which soil erosion sensitivity could be evaluated. The impact of precipitation, soil, topography and vegetation on soil erosion was divided into classes of extreme sensitivity, high sensitivity, medium sensitivity, low sensitivity and no sensitivity. With the aid of GIS, the resultant map from overlaying various factors showed that soil erosion sensitivity had great discrepancy in different parts of the region. In the southeastern part of the Tibet Plateau there were mainly three classes of sensitivity, namely, extreme, high and medium sensitivity. However, the other two classes, low and no sensitivity, were dominant in the northwestern part.展开更多
The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
The microstructure observation,tensile test,electrochemical measurement,and corrosion morphology characterization were conducted to study the effect of Gd on the microstructure,mechanical properties,and corrosion beha...The microstructure observation,tensile test,electrochemical measurement,and corrosion morphology characterization were conducted to study the effect of Gd on the microstructure,mechanical properties,and corrosion behavior of as-homogenized Mg−8Li−3Al−2Zn−0.2Zr(LAZ832−0.2Zr)alloy.The addition of trace Gd can improve the mechanical properties of as-homogenized LAZ832−0.2Zr alloy by refining the microstructure,reducing the content of AlLi softening phase,and forming Al_(2)Gd strengthening phase.Meanwhile,the addition of trace Gd can weaken the microgalvanic corrosion between matrix phase and AlLi phase,inhibit the galvanic corrosion betweenα-Mg phase andβ-Li phase,and result in the formation of dense oxide film containing Gd_(2)O_(3),thereby improving the corrosion resistance of the alloy.When the Gd content is 1.0 wt.%,the alloy shows the best comprehensive properties with the ultimate tensile strength of 189.8 MPa,elongation of 42.3%,and corrosion rate(determined by hydrogen evolution)of 0.86 mm·a^(−1).展开更多
Stress corrosion cracking (SCC) and anticorrosion measures of TU42C weld-joint were studied by constant load experiments and pickling experiments. The results show that in 40%(mass fraction) NaOH solution at 110℃, ca...Stress corrosion cracking (SCC) and anticorrosion measures of TU42C weld-joint were studied by constant load experiments and pickling experiments. The results show that in 40%(mass fraction) NaOH solution at 110℃, caustic SCC occurs in TU42C weld-joints at the applied potential of-1020mV(vs SCE) for 3d while at the potential of-950mV(vs SCE) for 10d. All the cracks are intergranular. In the 10% sulfuric acid, the cracks have the most negative self-corrosion potential-432.5mV(vs SCE) and are active to be further corroded by the acid. Because of the same corrosion behaviour as the lab weldment, preheater’s cracking in alumina factories is attributed to the combining actions of previous caustic SCC in Bayer solutions and continuous acid corrosion by pickling with the addition of RD. The following measures are effective to prevent the corrosion failure of preheater, such as postweld heat treatment at 620℃ to relax the residual weld stress, addition of CC3 and L826 as the corrosion inhibitors to improve the pickling and cleaning by the high pressure water instead of by pickling.展开更多
Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bend...Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.展开更多
This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conduc...This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conducted by using SAS300c resistivity meter. This involves applying a voltage into the soil through metal electrode and measuring the resistance to the flow of electric current. An AC-power supplies current flow (I) between two outer electrodes and the resultant voltage different (V) between two inner electrodes is measured using the Wenner Arrangement. The soil resistance given by R = V/I. This needs to be standardized over a unit length, the resistivity p which measured in ohm-m the equation is, ρ= 2ДdR. There are many factors control the ground resistivity such as soil composition, moisture content, pore water chemistry and pH. The results of the survey show inverse proportion between corrosivity and electrical resistivity, therefore resistivity method is very useful to incipient the corrosion as well as effective, quick, reliable and economic method. Structures such as natural gas, crude oil pipelines and steel constructions were reported to have been affected by soil corrosion all around the world, it can be concluded that sub soil corrosivity around the study area increases southwestern ward with depth.展开更多
基金financial supports from the National Natural Science Foundation of China (51801168,51731008)Natural Science Foundation of Fujian Province (2018J05093),ChinaNational Environmental Corrosion Platform of China。
文摘The influence of heat treatment on the corrosion behavior of rolled Mg5 Gd alloys in 3.5 wt.% Na Cl solution saturated with Mg(OH)2 was characterized by immersion test, electrochemical test, scanning electrochemical microscopy(SECM) and corrosion morphology analysis in order to improve the corrosion resistance of Mg alloys. The results showed that solution treatment reduced the corrosion rate of the Mg5 Gd significantly, resulting in relatively uniform corrosion and shallow corrosion cavities due to the dissolution of Cd-containing particles. The following aging process could further decrease the corrosion rate. Precipitation of nano-sized Cd-containing particles did not cause apparent micro-galvanic corrosion, which could be attributed to the formation of a protective corrosion product film fully covering the particles.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-339-04).
文摘The Tibet Plateau, occupying the main part of Qinghai-Tibet Plateau and having an average altitude of 4 500 m, has geomorphological features that are unique in the world, with soil erosion being one of the main ecological problems. Thus the main objectives of the present research were to set up an efficient and simple way of evaluating spatial distribution of soil erosion sensitivity in the Tibet Plateau as well as the responses of soil erosion to changes of natural environmental conditions, and to indicate key regions where soil erosion should be preferentially controlled. Based on the Universal Soil Loss Equation (USLE), the study applied geographic information system (GIS) technology to develop a methodological reference framework, from which soil erosion sensitivity could be evaluated. The impact of precipitation, soil, topography and vegetation on soil erosion was divided into classes of extreme sensitivity, high sensitivity, medium sensitivity, low sensitivity and no sensitivity. With the aid of GIS, the resultant map from overlaying various factors showed that soil erosion sensitivity had great discrepancy in different parts of the region. In the southeastern part of the Tibet Plateau there were mainly three classes of sensitivity, namely, extreme, high and medium sensitivity. However, the other two classes, low and no sensitivity, were dominant in the northwestern part.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金financial supports from the Anhui Provincial Natural Science Foundation,China (No.2208085QE124)the Natural Science Foundation of the Education Department of Anhui Province,China (No.KJ2021A0394)the Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials,China (No.GFST2021KF04)。
文摘The microstructure observation,tensile test,electrochemical measurement,and corrosion morphology characterization were conducted to study the effect of Gd on the microstructure,mechanical properties,and corrosion behavior of as-homogenized Mg−8Li−3Al−2Zn−0.2Zr(LAZ832−0.2Zr)alloy.The addition of trace Gd can improve the mechanical properties of as-homogenized LAZ832−0.2Zr alloy by refining the microstructure,reducing the content of AlLi softening phase,and forming Al_(2)Gd strengthening phase.Meanwhile,the addition of trace Gd can weaken the microgalvanic corrosion between matrix phase and AlLi phase,inhibit the galvanic corrosion betweenα-Mg phase andβ-Li phase,and result in the formation of dense oxide film containing Gd_(2)O_(3),thereby improving the corrosion resistance of the alloy.When the Gd content is 1.0 wt.%,the alloy shows the best comprehensive properties with the ultimate tensile strength of 189.8 MPa,elongation of 42.3%,and corrosion rate(determined by hydrogen evolution)of 0.86 mm·a^(−1).
文摘Stress corrosion cracking (SCC) and anticorrosion measures of TU42C weld-joint were studied by constant load experiments and pickling experiments. The results show that in 40%(mass fraction) NaOH solution at 110℃, caustic SCC occurs in TU42C weld-joints at the applied potential of-1020mV(vs SCE) for 3d while at the potential of-950mV(vs SCE) for 10d. All the cracks are intergranular. In the 10% sulfuric acid, the cracks have the most negative self-corrosion potential-432.5mV(vs SCE) and are active to be further corroded by the acid. Because of the same corrosion behaviour as the lab weldment, preheater’s cracking in alumina factories is attributed to the combining actions of previous caustic SCC in Bayer solutions and continuous acid corrosion by pickling with the addition of RD. The following measures are effective to prevent the corrosion failure of preheater, such as postweld heat treatment at 620℃ to relax the residual weld stress, addition of CC3 and L826 as the corrosion inhibitors to improve the pickling and cleaning by the high pressure water instead of by pickling.
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China
文摘Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.
文摘This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conducted by using SAS300c resistivity meter. This involves applying a voltage into the soil through metal electrode and measuring the resistance to the flow of electric current. An AC-power supplies current flow (I) between two outer electrodes and the resultant voltage different (V) between two inner electrodes is measured using the Wenner Arrangement. The soil resistance given by R = V/I. This needs to be standardized over a unit length, the resistivity p which measured in ohm-m the equation is, ρ= 2ДdR. There are many factors control the ground resistivity such as soil composition, moisture content, pore water chemistry and pH. The results of the survey show inverse proportion between corrosivity and electrical resistivity, therefore resistivity method is very useful to incipient the corrosion as well as effective, quick, reliable and economic method. Structures such as natural gas, crude oil pipelines and steel constructions were reported to have been affected by soil corrosion all around the world, it can be concluded that sub soil corrosivity around the study area increases southwestern ward with depth.