期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Composition and properties of soil humus in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum 被引量:2
1
作者 杨玉盛 郭剑芬 +2 位作者 刘艳丽 林瑞余 陈光水 《Journal of Forestry Research》 SCIE CAS CSCD 2002年第1期33-36,83,共4页
This study was conducted in Xinkou Experimental Forestry Farm of Fujian Agricultural and Forestry University, Sanming, Fujian Province in January 1999. Taking pure stand of Chinese fir as control, the authors measured... This study was conducted in Xinkou Experimental Forestry Farm of Fujian Agricultural and Forestry University, Sanming, Fujian Province in January 1999. Taking pure stand of Chinese fir as control, the authors measured and studied the content of organic carbon, content of humic acid (HA), ratio of HA to fulvic acid (FA), and the characteristics of infrared light spectrum and visible light spectrum of soil humus in the mixed forest of Chinese fir and Tsoong?tree. Compared to humus composition in the pure stand of Chinese fir, the content of soil organic C, HA content, and the E4 value of HA for different layers of soil, except for the ratio of HA to FA, showed a significant increase in the mixed forest, while the ratios of E4 to E6 had a little decrease. The infrared light spectrum of humic acid had an absorptive peak at 1650 cm-1. It is concluded that the levels of humification and aromaticity of soil humus are higher in the mixed forest, which is favorable for the improvement of soil structure and nutrient supply, thus improving the soil fertility to a certain degree. 展开更多
关键词 Chinese fir Tsoong抯 tree Mixed forest Soil humus fraction Optical properties
下载PDF
冲击压实技术在新填路基压实中的应用 被引量:1
2
作者 张立辉 《黑龙江交通科技》 2003年第11期20-21,共2页
通过在黑北公路采用冲击压实机具的实践 ,探讨了影响冲击压实效果的相关因素 。
关键词 公路工程 冲击压实机具 新填路基压实 黑北公路 松铺厚度 土质组成 冲击程序 施工技术
下载PDF
道路工程中软土地基问题分析与处理 被引量:2
3
作者 马立新 《中国公路》 2022年第5期108-109,共2页
本文根据软土地基的特点总结了施工过程中常见的问题,以及引起的各类事故,进一步分析了常见软土地基的土质组成和处理的技术要求,并提出了处理软土地基的主要方法等。
关键词 软土地基 工程事故 土质组成 地基处理
下载PDF
Microbial Activity Indices: Sensitive Soil Quality Indicators for Trace Metal Stress 被引量:11
4
作者 LI Yong-Tao T. BECQUER2 +3 位作者 C. QUANTIN M. BENEDETTI P. LAVELLE DAI Jun 《Pedosphere》 SCIE CAS CSCD 2005年第4期409-416,共8页
Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a ... Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251, 250, 171, and 2.4 mg kg^-1 respectively. DTPA-extractable metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, totall Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C mineralization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some “linked” microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone. 展开更多
关键词 AVAILABILITY INDICATION microbial characteristics trace metals
下载PDF
Quantitative Effect of Soil Texture Composition on Retardation Factor of K^+ Transport 被引量:15
5
作者 WANGYU ZHANGYIPING 《Pedosphere》 SCIE CAS CSCD 2001年第4期377-382,共6页
With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the c... With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the condition of saturated steady water flow were conducted to qualify the effects of soil texture com- position on the retardation factor (R) of K~(+) transport. The results showed that the retardation factor of K~ (+) transport in the tested soil columns greatly increased with increasing clay contents. In an attempt to use pedo-transfer function (PTF) approach in the solute transport study, a preliminary PTF was established through the six packed columns (Columns 1~6) with soil basic data including soil bulk density, volumet- ric water content and clay content to predict the retardation factor, and proved valid by the satisfactory prediction of R in Column 7. 展开更多
关键词 pedo-transfer function retardation factor soil basic properties soil solute transport
下载PDF
Composition, diversity and distribution of tree species in response to changing soil properties with increasing distance from water source – a case study of Gobind Sagar Reservoir in India 被引量:4
6
作者 Somanath SARVADE Bhupender GUPTA Matber SINGH 《Journal of Mountain Science》 SCIE CSCD 2016年第3期522-533,共12页
Construction of big dams on rivers develops artificial lakes or water reservoirs which conceive alterations in soil properties of the upstream catchment area. An undulating topography and freckly soil properties cause... Construction of big dams on rivers develops artificial lakes or water reservoirs which conceive alterations in soil properties of the upstream catchment area. An undulating topography and freckly soil properties cause ups and downs in tree diversity, composition and distribution. The study aimed to evaluate the effect of Gobind Sagar reservoir on soil properties relative to the distance from it and assess its effect on tree diversity, evenness and their distribution in tropical and subtropical forests. Based on data analysis it was found that the soil moisture and organic carbon decreased along with increasing distance from the reservoir. It played a significant role in varying tree diversity. The sites distributed within0-2 km showed significantly higher α and β-diversity indices. Tree species richness and diversity indices showed a strong correlation(p &lt; 0.05) with soil moisture and organic carbon content. Simpson's and Mc Intosh evenness indices showed a strong negative correlation with soil bulk density. Indirect Detrended Correspondence Analysis(DCA) identified soil moisture and soil organic carbon as two major environmental gradients that influenced tree diversity and their distribution in five tropical and four subtropical forests in an upstream catchment of the reservoir. Mixed forests inhabited moist sites andAcacia-Pinus forests showed an inclination to dry areas. Canonical Correspondence Analysis(CCA)revealed that the tree species in tropical forests were mainly affected by driving forces such as soil moisture,organic carbon and bulk density whereas, in subtropical forest tree species were influenced by elevation, soil p H, EC and clay content. 展开更多
关键词 Species richness Diversity Evenness DCA CCA Gobind Sagar reservoir Tropical and subtropical forests
下载PDF
Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient 被引量:5
7
作者 CUI Hai-jun WANG Gen-xu +3 位作者 YANG Yan YANG Yang CHANG Rui-ying RAN Fei 《Journal of Mountain Science》 SCIE CSCD 2016年第6期1013-1023,共11页
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi... Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community. 展开更多
关键词 Alpine grassland Elevational gradient Soil microbial community Phospholipid fatty acid Plant functional group Soil chemistry Variancepartitioning
下载PDF
Lowland pasture in Himalayan highland: edaphic properties and species composition
8
作者 Kesang WANGCHUK 《Journal of Mountain Science》 SCIE CSCD 2016年第3期455-464,共10页
This study was carried out to investigate if on-farm cut vs. grazed pastures differed in soil fertility and species density in the temperate Himalayan highlands. Soil fertility and species relative density were measur... This study was carried out to investigate if on-farm cut vs. grazed pastures differed in soil fertility and species density in the temperate Himalayan highlands. Soil fertility and species relative density were measured from 30 cut and 30 grazed dairy pastures. In both types of pasture, soil pH, available phosphorus(P) and exchangeable potassium(K) were negatively correlated with pasture age and slope. In cut pasture, cocksfoot(Dactylis glomerata) and pasture age were positively correlated,whereas in grazed pasture, they were negatively correlated. In grazed pasture, unsown species and pasture age were positively correlated. Soil available P was significantly greater in cut pastures whereas soil exchangeable K was significantly greater in grazed pastures. In terms of species density, cut pasture had greater densities of cocksfoot and Italian ryegrass(Lolium multiflorum), whereas grazed pasture showed greater densities of white clover, sedge and local grass. Our study suggests that, if there are no improvements in the current method of pasture management, the cut pastures in the future are likely to have a simple pasture mixture constituting only cocksfoot and white clover(Trifolium repens).Whereas in grazed pasture, the pasture mixture is likely to be comprised of white clover and unsown species such as sedge, local grass and broadleaf weeds. 展开更多
关键词 Cutting Grazing Pasture age Soil fertility Species relative density
下载PDF
Soil Enzyme Activities and Organic Matter Composition Affected by 26 Years of Continuous Cropping 被引量:12
9
作者 Fugen DOU Alan L.WRIGHT +2 位作者 Rao S.MYLAVARAPU JIANG Xianjun John E.MATOCHA 《Pedosphere》 SCIE CAS CSCD 2016年第5期618-625,共8页
The study was to determine the long-term effects of subtropical monoculture and rotational cropping systems and fertilization on soil enzyme activities and soil C, N, and P levels. Cropping systems included continuous... The study was to determine the long-term effects of subtropical monoculture and rotational cropping systems and fertilization on soil enzyme activities and soil C, N, and P levels. Cropping systems included continuous sorghum(Sorghum bicolor L.), cotton(Gossypium hirsutum L.), corn(Zea mays L.), and cotton/sorghum rotations after 26 years of treatment imposition. Soil under continuous sorghum and continuous corn had 15% and 11%, respectively, greater C concentrations than soil under continuous cotton.Organic C was 10% higher at 0–7.5 cm than at 7.5–15 cm. Total N followed similar trends with soil depth as organic C. Continuous sorghum had 19% higher total N than other crop species and rotations. With fertilization, continuous cotton had the highest total P at 0–7.5 cm and sorghum had the highest at 7.5–15 cm. Soil total P was 14% higher at 0–7.5 than at 7.5–15 cm, and fertilization increased 15% total P compared to unfertilized soil. Arylsulfatase, alkaline phosphatase, and β-d-glucosidase activity were the highest for sorghum and the lowest for cotton. Rotation increased enzyme activities compared to continuous cotton but not for continuous sorghum. Of all crop species and rotations, continuous cotton generally showed the lowest levels of organic matter and enzyme activities after 26 years. Fertilization significantly increased the yields for all cropping systems, but rotation had no significant effect on either sorghum or cotton lint yield compared to each crop grown in monoculture. Long-term cropping did not increase soil organic matter levels beyond short-term gains, indicating the difficulty in promoting C sequestration in subtropical soils. 展开更多
关键词 C sequestration FERTILIZATION MONOCULTURE ROTATION subtropical soil
原文传递
Redistribution of Soil Organic Carbon Triggered by Erosion at Field Scale Under Subhumid Climate,Hungary
10
作者 Zoltan SZALAI Judit SZABO +7 位作者 Jozsef KOVACS Erzsebet MESZAROS Gaspar ALBERT Csaba CENTERI Boglarka SZABO Balazs MADARASZ Dora ZACHARY Gergely JAKAB 《Pedosphere》 SCIE CAS CSCD 2016年第5期652-665,共14页
Soil organic carbon(SOC) has primary importance in terms of soil physics, soil fertility and even of climate change control. One hundred soil samples were taken from an intensively cultivated Cambisol to quantify SOC ... Soil organic carbon(SOC) has primary importance in terms of soil physics, soil fertility and even of climate change control. One hundred soil samples were taken from an intensively cultivated Cambisol to quantify SOC redistribution triggered by soil erosion under a subhumid climate, by the simultaneous application of diffuse reflectance(240–1 900 nm) and traditional physico-chemical methods.The representative sample points were collected from the solum along the slopes at the depth of 20–300 cm with a mean SOC content of 12 g kg^(-1). Hierarchical cluster analyses were performed based on the determined SOC results. The spatial pattern of the groups created were similar, and even though the classifications were not the same, diffuse reflectance had proven to be a suitable method for soil/sediment classification even within a given arable field. Both organic and inorganic carbon distributions were found to be a proper tool for estimations of past soil erosion processes. The SOC enrichment was found on two sedimentary spots with different geomorphological positions. Soil organic matter composition also differed between the two spots due to selective deposition of the delivered organic matter. The components with low-molecular-weight reached the bottom of the slope where they could leach into the profile, while the more polymerised organic matter compositions were delivered and deposited even before on a higher segment of the slope in an aggregated form. This spatial difference appeared below the uppermost tilled soil layer as well, referring the lower efficiency of conventional ploughing tillage in soil spatial homogenisation. 展开更多
关键词 CAMBISOL carbon sequestration diffuse reflectance selective erosion soil organic matter composition
原文传递
Effects of plant intraspecific variation on the prediction of C_(3)/C_(4)vegetation ratio from carbon isotope composition of topsoil organic matter across grasslands
11
作者 Wentao Luo Xiaoguang Wang +5 位作者 Karl Auerswald Zhengwen Wang Michael I.Bird Christopher J.Still Xiao-Tao Lv Xingguo Han 《Journal of Plant Ecology》 SCIE CSCD 2021年第4期628-637,共10页
Aims Understanding the patterns and drivers of carbon isotope discrimination(13Δ)in C_(3)and C_(4)functional groups is critical for predicting C_(3)/C_(4)vegetation ratio from the isotopic composition of soil organic... Aims Understanding the patterns and drivers of carbon isotope discrimination(13Δ)in C_(3)and C_(4)functional groups is critical for predicting C_(3)/C_(4)vegetation ratio from the isotopic composition of soil organic matter.In this study,we aimed to evaluate how intraspecific variation will modify functional group-level 13Δvalues and the associated prediction of C_(3)/C_(4)vegetation ratio.Methods We investigated 13Δof 726 individual plants(96 species;C_(3)and C_(4)functional groups)and topsoil organic matter in 26 grassland communities along an aridity gradient in northern China.The fraction of C_(4)contribution was calculated with mixing models that considered:(i)both intra-and interspecific effects on the 13Δvalues of C_(3)and C_(4)functional groups;(ii)only interspecific effects;or(iii)none of these effects.Important Findings We found divergent responses of plant 13Δat the intraspecific level to the changes of aridity across the gradient.The 13Δof both C_(3)and C_(4)functional groups was negatively correlated with an aridity index,with higher sensitivity for C_(3)than for C_(4)functional groups.Intraspecific 13Δvariation played a key role in driving the total 13Δvariations of C_(3)plants.Overlooking such intraspecific effect in mixing models led to a greatly increased fraction of C_(4)contribution to soil organic carbon.A correction for the effects of intraspecific variation is therefore essential for correctly inferring C_(3)/C_(4)vegetation ratio in the past.Our findings provide basic information for the reconstruction of past vegetation change from bulk materials in arid and semiarid biomes. 展开更多
关键词 arid and semiarid grasslands interspecific variation intraspecific variation soil organic matter two-member mixing models vegetation ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部