The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the ded...The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system(DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system(RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels(CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.展开更多
基金Project(51178298)supported by the National Natural Science Foundation of China
文摘The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system(DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system(RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels(CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.