Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring s...Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate.展开更多
To investigate the potential use of two Japanese regional clayey soils, named Ariake clay and Akaboku soil, as soil barrier materials, a series of laboratory diffusion tests are presented. Using an available computer ...To investigate the potential use of two Japanese regional clayey soils, named Ariake clay and Akaboku soil, as soil barrier materials, a series of laboratory diffusion tests are presented. Using an available computer program Pollute V6.3, the effective diffusion coefficients of K^+ of the soils were back-calculated from the diffusion tests. It is found that the Ariake clay has a larger effective diffusion coefficient than the Akaboku soil, indicating that the Ariake clay may provide a better diffusion barrier. A comparison of the effective diffusion coefficients between the single-salt solution condition and the multi-salt solution condition indicates that soils have higher effective diffusion coefficients under the former condition. It is suggested to use miscible solution close to landfill leachates for determining effective diffusion coefficients of specified chemical species for a practical design.展开更多
[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were ...[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils.展开更多
A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron micr...A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron microscope and transmission electron microscope. The results show that nano-MoS2 particles are distributed on the surface of bentonite and form layered structures with layer distance of about 0.64 nm. The composite presents an excellent performance for the removal of methyl orange. Some operation conditions affect the removal efficiency of methyl orange, such as dosage of composite, initial concentration of methyl orange, temperature and pH value. However, light source does not influence the removal efficiency. The removal mechanism is attributed to the adsorption of methyl orange on the nano-MoS2/bentonite composite. The adsorption of methyl orange on the composite is in accordance with the pseudo-second-order kinetic model.展开更多
Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different p...Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1 increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.展开更多
Surface charge, secondary adsorption- desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequentia...Surface charge, secondary adsorption- desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequential extraction method, respectively. The soil surface negative charges increased whereas the amount of positive charges decreased with increase of P adsorbed. The soil secondary adsorption capacity for Cu2+ and Zn2+ was positively significantly correlated with the amount of P adsorbed by the soils, which could be described by the Langmuir equation. The amounts of Cu2+ and Zn2+ desorption from soils were decreased after P adsorption by the soils and the relationship between them was linear. After the soils adsorbed P, form distribution of Cu2+ and Zn2+ in soils changed remarforbly.展开更多
A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlor...A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.展开更多
Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chroma...Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.展开更多
Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the...Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the adsorption intensity, and kappa, the coefficientrelated to adsorption capacity, of the Freundlich equation increased with increasing solution/soilratio (SSR) and with decreasing temperature (T). For the range of experimental conditions, the valueof delta q/delta c, the rate of change of the amount of NH_4^+ adsorbed in the soil solid phase (q)with respect to the equilibrium concentration of NH_4^+ in soil solution (c), was 0.840, indicatingthat q increased with increasing c. From 2 to 45 deg C, delta q/delta SSR, the rate of change of qwith respect to SSR, decreased from 2.598 to 1.996, showing that q increased with increasing SSR,while its increasing rate decreased with temperature. From SSR 1:1 to 20:1, delta q/delta T, therate of change of q with respect to T, decreased from -- 0.095 to -- 0.361, indicating that qdecreased with increasing temperature, and at the same time the negative effect of temperaturebecame larger as SSR increased. Thus under the experimental conditions the order of importance indetermining the amount of NH_4^+ adsorbed in the soil solid phase was delta q/delta SSR > deltaq/delta c > |delta q/delta T|, indicating that the greatest effect on the amount of NH_4^+ adsorbedwas with the solution/soil ratio; the equilibrium concentration of NH_4^+ had a lesser effect; andtemperature had the least effect.展开更多
[Objective] This study aimed to investigate the effect of freezing and thawing on ammonium adsorption in dryland soil. [Method] The lab simulation test was conducted to study the effect of freeze-thaw action on the to...[Objective] This study aimed to investigate the effect of freezing and thawing on ammonium adsorption in dryland soil. [Method] The lab simulation test was conducted to study the effect of freeze-thaw action on the total adsorbed amount of ammonium (deionized water extract) and strongly-adsorbed amount of ammonium (0.01 mol/L KCl solution extract) in the dryland soil of Sanjiang Plain. [Result] Compared with linear equation, Freundlich equation could better fit the total adsorbed amount of ammonium in dryland soil (R 2 0.99, SE1.69). The freeze-thaw action almost had no influence on the total adsorbed amount of ammonium. When the initial concentration of NH 4 + increased from 0 to 200 mg/L, the total adsorbed NH 4 + amount increased from -0.52 to 39.0 mg/kg under freeze-thaw treatment (FTT), while it increased from -0.70 to 38.5 mg/kg under unfreeze-thaw treatment (UFTT). However, the strongly-adsorbed amount of ammonium presented linear relationship with the concentration of NH 4 + (R 2 0.99, SE0.54), and the strongly-adsorbed amount of ammonium increased significantly by FTT. When the initial concentration of NH 4 + increased from 0 to 200 mg/L, the strongly adsorbed amount increased linearly from 2.36 to 28.81 mg/kg for FTT and from -4.25 to 25.12 mg/kg for UFTT. The freezethaw action decreases the concentration of NH 4 + in soil solution when the net strongly-adsorbed NH 4 + in soil is zero., therefore, FTT helped to reduce the leaching of ammonium ions in soil. Freeze-thaw action mainly influenced the exchangeable adsorbed NH 4 + in soil. [Conclusion] This study provides theoretical basis for preventing excessive soil nitrogen from entering into water body and controlling water entrophication.展开更多
Four soils, phaeozem (PM), saline-alkali soil (SA), meadow albic bleached soil (MA) and dark brown forest soil (DB) from Northeast China were used to examine the sorption and desorption characteristics of Cd and pH in...Four soils, phaeozem (PM), saline-alkali soil (SA), meadow albic bleached soil (MA) and dark brown forest soil (DB) from Northeast China were used to examine the sorption and desorption characteristics of Cd and pH influence on it. According to sorption experiment without pH control, the order of amount of absorbed Cd by soils was: SA>PM>DB>MA. The results from non-linear fitting method showed that Langmuir and Freundrich models were more adaptable than Temkin model in describing the sorption data. The maximum sorption amounts from Langmuir model were: PM>SA>MA>DB. Exponential equation for PM and SA and quadratic equation for MA and DB were suitable to fit the desorption data. The order of average desorption percentage was: MA>DB>PM>SA. The amounts of sorption by PM, DB and MA reached the maximum in pH 9.0, while sorption by SA was linearly increased in the experimental range of pH 3.3-11.4. In uniform pH, however, Cd sorption by SA was the minimum among four soils, which indicated that the more amounts of Cd absorbed by SA in isotherm sorption were ascribed to the higher soil pH. The higher sorption of Cd in PM resulted from the higher percentage of organic matter and clay components.展开更多
The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniqu...The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.展开更多
This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of pho...This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of phosphorus from aqueous solutions at various concentrations, p H levels and contact time. The desorption of phosphorus(P) from adsorbents was done immediately after sorption at the maximum initial concentration using the successive dilution method. The characterization of FTIR, SEM, and XRD indicated that n ZVI was successfully loaded to the surface of natural bentonite. The sorption of phosphorus on B-n ZVI was observed to be p H-dependent, with maximum phosphorus removal occurring at the p H range of 2 to 5. The results demonstrate that the maximum sorption capacities of natural bentonite and B-n ZVI were 4.61 and 27.63 mg·g^(-1), respectively.Langmuir, Freundlich, and Redlich–Peterson models properly described the sorption isotherm data. For either adsorbent, desorption isotherms did not coincide with their corresponding sorption isotherms, suggesting the occurrence of irreversibility and hysteresis. The average percentages of retained phosphorus released from natural bentonite and B-n ZVI were 80% and 9%, respectively. The results indicated that sorption kinetics was best described by the pseudo-second-order model. The present study suggests that B-n ZVI could be used as a suitable adsorbent for the removal of phosphorus from aqueous solutions.展开更多
The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the...The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.展开更多
基金Project(2015BAB16B01)supported by the National Science and Technology Support Program of China
文摘Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate.
文摘To investigate the potential use of two Japanese regional clayey soils, named Ariake clay and Akaboku soil, as soil barrier materials, a series of laboratory diffusion tests are presented. Using an available computer program Pollute V6.3, the effective diffusion coefficients of K^+ of the soils were back-calculated from the diffusion tests. It is found that the Ariake clay has a larger effective diffusion coefficient than the Akaboku soil, indicating that the Ariake clay may provide a better diffusion barrier. A comparison of the effective diffusion coefficients between the single-salt solution condition and the multi-salt solution condition indicates that soils have higher effective diffusion coefficients under the former condition. It is suggested to use miscible solution close to landfill leachates for determining effective diffusion coefficients of specified chemical species for a practical design.
基金Supported by Science and Technology Research Project of Jiangxi Education Department(GJJ14289)Science and Technology Research Project of Environmental Protection Department of Jiangxi Province(JXHBKJ2013-4)Special Fund for Visiting Scholars from the Development Program for Middle-aged and Young Teachers in Colleges of Jiangxi Province(GJGH[2014]N0.15)
文摘[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils.
基金Project (2011M500110) supported by the Postdoctoral Science Foundation of ChinaProject (50905054) supported by the National Natural Science Foundation of ChinaProject (12RC03) supported by Hefei University, China
文摘A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron microscope and transmission electron microscope. The results show that nano-MoS2 particles are distributed on the surface of bentonite and form layered structures with layer distance of about 0.64 nm. The composite presents an excellent performance for the removal of methyl orange. Some operation conditions affect the removal efficiency of methyl orange, such as dosage of composite, initial concentration of methyl orange, temperature and pH value. However, light source does not influence the removal efficiency. The removal mechanism is attributed to the adsorption of methyl orange on the nano-MoS2/bentonite composite. The adsorption of methyl orange on the composite is in accordance with the pseudo-second-order kinetic model.
基金Supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) the National Natural Science Foundation of China (No. 40201026).
文摘Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1 increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.
基金Project (No. 49871043) supported by the National Natural Science Foundation of China.
文摘Surface charge, secondary adsorption- desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequential extraction method, respectively. The soil surface negative charges increased whereas the amount of positive charges decreased with increase of P adsorbed. The soil secondary adsorption capacity for Cu2+ and Zn2+ was positively significantly correlated with the amount of P adsorbed by the soils, which could be described by the Langmuir equation. The amounts of Cu2+ and Zn2+ desorption from soils were decreased after P adsorption by the soils and the relationship between them was linear. After the soils adsorbed P, form distribution of Cu2+ and Zn2+ in soils changed remarforbly.
基金Project supported by the National Natural Science Foundation of China (No. 30170537).
文摘A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.
文摘Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.
基金Project supported by the National Natural Science Foundation of China (No. 49901009).
文摘Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the adsorption intensity, and kappa, the coefficientrelated to adsorption capacity, of the Freundlich equation increased with increasing solution/soilratio (SSR) and with decreasing temperature (T). For the range of experimental conditions, the valueof delta q/delta c, the rate of change of the amount of NH_4^+ adsorbed in the soil solid phase (q)with respect to the equilibrium concentration of NH_4^+ in soil solution (c), was 0.840, indicatingthat q increased with increasing c. From 2 to 45 deg C, delta q/delta SSR, the rate of change of qwith respect to SSR, decreased from 2.598 to 1.996, showing that q increased with increasing SSR,while its increasing rate decreased with temperature. From SSR 1:1 to 20:1, delta q/delta T, therate of change of q with respect to T, decreased from -- 0.095 to -- 0.361, indicating that qdecreased with increasing temperature, and at the same time the negative effect of temperaturebecame larger as SSR increased. Thus under the experimental conditions the order of importance indetermining the amount of NH_4^+ adsorbed in the soil solid phase was delta q/delta SSR > deltaq/delta c > |delta q/delta T|, indicating that the greatest effect on the amount of NH_4^+ adsorbedwas with the solution/soil ratio; the equilibrium concentration of NH_4^+ had a lesser effect; andtemperature had the least effect.
基金Supported by the National Natural Science Foundation of China (Key Project of 40930740, General Project of 41171384)the Special Fund for the Environmental Protection Research in the Public Interest, China (2010467046)~~
文摘[Objective] This study aimed to investigate the effect of freezing and thawing on ammonium adsorption in dryland soil. [Method] The lab simulation test was conducted to study the effect of freeze-thaw action on the total adsorbed amount of ammonium (deionized water extract) and strongly-adsorbed amount of ammonium (0.01 mol/L KCl solution extract) in the dryland soil of Sanjiang Plain. [Result] Compared with linear equation, Freundlich equation could better fit the total adsorbed amount of ammonium in dryland soil (R 2 0.99, SE1.69). The freeze-thaw action almost had no influence on the total adsorbed amount of ammonium. When the initial concentration of NH 4 + increased from 0 to 200 mg/L, the total adsorbed NH 4 + amount increased from -0.52 to 39.0 mg/kg under freeze-thaw treatment (FTT), while it increased from -0.70 to 38.5 mg/kg under unfreeze-thaw treatment (UFTT). However, the strongly-adsorbed amount of ammonium presented linear relationship with the concentration of NH 4 + (R 2 0.99, SE0.54), and the strongly-adsorbed amount of ammonium increased significantly by FTT. When the initial concentration of NH 4 + increased from 0 to 200 mg/L, the strongly adsorbed amount increased linearly from 2.36 to 28.81 mg/kg for FTT and from -4.25 to 25.12 mg/kg for UFTT. The freezethaw action decreases the concentration of NH 4 + in soil solution when the net strongly-adsorbed NH 4 + in soil is zero., therefore, FTT helped to reduce the leaching of ammonium ions in soil. Freeze-thaw action mainly influenced the exchangeable adsorbed NH 4 + in soil. [Conclusion] This study provides theoretical basis for preventing excessive soil nitrogen from entering into water body and controlling water entrophication.
基金Under the auspices of the K ey Projectof K now ledge Innovation Program of C hinese A cadem y of Sciences (N o.K ZC X 1-SW -19)
文摘Four soils, phaeozem (PM), saline-alkali soil (SA), meadow albic bleached soil (MA) and dark brown forest soil (DB) from Northeast China were used to examine the sorption and desorption characteristics of Cd and pH influence on it. According to sorption experiment without pH control, the order of amount of absorbed Cd by soils was: SA>PM>DB>MA. The results from non-linear fitting method showed that Langmuir and Freundrich models were more adaptable than Temkin model in describing the sorption data. The maximum sorption amounts from Langmuir model were: PM>SA>MA>DB. Exponential equation for PM and SA and quadratic equation for MA and DB were suitable to fit the desorption data. The order of average desorption percentage was: MA>DB>PM>SA. The amounts of sorption by PM, DB and MA reached the maximum in pH 9.0, while sorption by SA was linearly increased in the experimental range of pH 3.3-11.4. In uniform pH, however, Cd sorption by SA was the minimum among four soils, which indicated that the more amounts of Cd absorbed by SA in isotherm sorption were ascribed to the higher soil pH. The higher sorption of Cd in PM resulted from the higher percentage of organic matter and clay components.
文摘The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.
文摘This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of phosphorus from aqueous solutions at various concentrations, p H levels and contact time. The desorption of phosphorus(P) from adsorbents was done immediately after sorption at the maximum initial concentration using the successive dilution method. The characterization of FTIR, SEM, and XRD indicated that n ZVI was successfully loaded to the surface of natural bentonite. The sorption of phosphorus on B-n ZVI was observed to be p H-dependent, with maximum phosphorus removal occurring at the p H range of 2 to 5. The results demonstrate that the maximum sorption capacities of natural bentonite and B-n ZVI were 4.61 and 27.63 mg·g^(-1), respectively.Langmuir, Freundlich, and Redlich–Peterson models properly described the sorption isotherm data. For either adsorbent, desorption isotherms did not coincide with their corresponding sorption isotherms, suggesting the occurrence of irreversibility and hysteresis. The average percentages of retained phosphorus released from natural bentonite and B-n ZVI were 80% and 9%, respectively. The results indicated that sorption kinetics was best described by the pseudo-second-order model. The present study suggests that B-n ZVI could be used as a suitable adsorbent for the removal of phosphorus from aqueous solutions.
文摘The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.