期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
土-水特征参数对边坡稳定性影响分析 被引量:5
1
作者 邢精连 侯丽 张天琦 《水利技术监督》 2020年第1期53-55,84,共4页
文章利用Geostudio软件对不同非饱和参数下的边坡降雨渗透稳定性规律进行数值模拟,结果表明:降雨条件下上部监测点孔压随时间呈现在降雨时迅速增大,下部监测点孔压则呈现在降雨时刻迅速增大,而在降雨结束时刻缓慢增大的趋势,参数a越大,... 文章利用Geostudio软件对不同非饱和参数下的边坡降雨渗透稳定性规律进行数值模拟,结果表明:降雨条件下上部监测点孔压随时间呈现在降雨时迅速增大,下部监测点孔压则呈现在降雨时刻迅速增大,而在降雨结束时刻缓慢增大的趋势,参数a越大,整体安全系数越大;当a=40kPa时整体安全系数有一个突然的陡降;参数m,n,k越大,安全系数整体越大。 展开更多
关键词 极限平衡法 土-水特征参数 边坡稳定 渗流 数值模拟
下载PDF
不同土-水特征参数对边坡稳定性影响分析 被引量:5
2
作者 邢精连 侯丽 张天琦 《水利技术监督》 2019年第5期250-253,共4页
利用Geostudio软件对不同非饱和参数下的边坡降雨渗透稳定性规律进行了数值模拟,结果表明:降雨条件下上部监测点孔压随时间呈现在降雨时迅速增大,下部监测点孔压则呈现在降雨时刻迅速增大,而在降雨结束时刻缓慢增大的趋势,参数a越大,整... 利用Geostudio软件对不同非饱和参数下的边坡降雨渗透稳定性规律进行了数值模拟,结果表明:降雨条件下上部监测点孔压随时间呈现在降雨时迅速增大,下部监测点孔压则呈现在降雨时刻迅速增大,而在降雨结束时刻缓慢增大的趋势,参数a越大,整体安全系数越大,但是当a=40kPa时整体安全系数有一个突然的陡降;参数m,n,k越大,安全系数整体上也越大。 展开更多
关键词 极限平衡法 土-水特征参数 边坡稳定 渗流 数值模拟
下载PDF
Estimating Water Retention with Pedotransfer Functions Using Multi-Objective Group Method of Data Handling and ANNs 被引量:2
3
作者 H.BAYAT M.R.NEYSHABOURI +1 位作者 K.MOHAMMADI N.NARIMAN-ZADEH 《Pedosphere》 SCIE CAS CSCD 2011年第1期107-114,共8页
Pedotransfer functions (PTFs) have been developed to estimate soil water retention curves (SWRC) by various techniques. In this study PTFs were developed to estimate the parameters (θs, θr, α and λ) of the B... Pedotransfer functions (PTFs) have been developed to estimate soil water retention curves (SWRC) by various techniques. In this study PTFs were developed to estimate the parameters (θs, θr, α and λ) of the Brooks and Corey model from a data set of 148 samples. Particle and aggregate size distribution fractal parameters (PSDFPs and ASDFPs, respectively) were computed from three fractal models for either particle or aggregate size distribution. The most effective model in each group was determined by sensitivity analysis. Along with the other variables, the selected fractal parameters were employed to estimate SWRC using multi-objective group method of data handling (mGMDH) and different topologies of artificial neural networks (ANNs). The architecture of ANNs for parametric PTFs was different regarding the type of ANN, output layer transfer functions and the number of hidden neurons. Each parameter was estimated using four PTFs by the hierarchical entering of input variables in the PTFs. The inclusion of PSDFPs in the list of inputs improved the accuracy and reliability of parametric PTFs with the exception of ~s- The textural fraction variables in PTF1 for the estimation of a were replaced with PSDFPs in PTF3. The use of ASDFPs as inputs significantly improved a estimates in the model. This result highlights the importance of ASDFPs in developing parametric PTFs. The mCMDH technique performed significantly better than ANNs in most PTFs. 展开更多
关键词 aggregate size distribution fraetal parameters particle size distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部