期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合低维特征和在线加权MIL的目标跟踪算法
被引量:
1
1
作者
孔凡芝
李金龙
吴冬梅
《计算机工程与应用》
CSCD
北大核心
2019年第18期116-121,139,共7页
为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀...
为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀疏特征在线学习生成弱分类器集,并通过示例加权方法来促进学习过程,最终生成一个强分类器,用于测试视频中的目标跟踪。实验结果表明,该算法在旋转、光照和尺度变化等影响下取得了优异的效果。相比其他几种改进型多示例学习算法,提出的算法获得了更好的跟踪效果。
展开更多
关键词
目标跟踪
在线加权多示例学习
HAAR-LIKE特征
稀疏表示
下载PDF
职称材料
题名
结合低维特征和在线加权MIL的目标跟踪算法
被引量:
1
1
作者
孔凡芝
李金龙
吴冬梅
机构
浙江传媒学院电子信息学院
曲阜师范大学物理工程学院
出处
《计算机工程与应用》
CSCD
北大核心
2019年第18期116-121,139,共7页
基金
浙江省科技厅公益项目(No.LGG18F010001)
浙江省科技厅公益项目(No.LGG19E050002)
文摘
为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀疏特征在线学习生成弱分类器集,并通过示例加权方法来促进学习过程,最终生成一个强分类器,用于测试视频中的目标跟踪。实验结果表明,该算法在旋转、光照和尺度变化等影响下取得了优异的效果。相比其他几种改进型多示例学习算法,提出的算法获得了更好的跟踪效果。
关键词
目标跟踪
在线加权多示例学习
HAAR-LIKE特征
稀疏表示
Keywords
target tracking
online weighted multiple instance learning
Haar-like feature
sparse representation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合低维特征和在线加权MIL的目标跟踪算法
孔凡芝
李金龙
吴冬梅
《计算机工程与应用》
CSCD
北大核心
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部