期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合低维特征和在线加权MIL的目标跟踪算法 被引量:1
1
作者 孔凡芝 李金龙 吴冬梅 《计算机工程与应用》 CSCD 北大核心 2019年第18期116-121,139,共7页
为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀... 为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀疏特征在线学习生成弱分类器集,并通过示例加权方法来促进学习过程,最终生成一个强分类器,用于测试视频中的目标跟踪。实验结果表明,该算法在旋转、光照和尺度变化等影响下取得了优异的效果。相比其他几种改进型多示例学习算法,提出的算法获得了更好的跟踪效果。 展开更多
关键词 目标跟踪 在线加权多示例学习 HAAR-LIKE特征 稀疏表示
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部