期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PCA联合字典的稀疏系数NMF融合
1
作者 孙小芳 《国土资源遥感》 CSCD 北大核心 2018年第4期56-61,共6页
为了减少混合像元对字典建立的影响,结合在线字典学习法与主成分分析(principal component analysis,PCA)法提取全色与各分解影像字典的第一主成分分量构成PCA联合稀疏字典。该字典包括多光谱影像特征与高空间分辨率影像特征,同时考虑... 为了减少混合像元对字典建立的影响,结合在线字典学习法与主成分分析(principal component analysis,PCA)法提取全色与各分解影像字典的第一主成分分量构成PCA联合稀疏字典。该字典包括多光谱影像特征与高空间分辨率影像特征,同时考虑到了混合像元问题。使用PCA联合稀疏字典进行正交匹配追踪法(orthogonal matching pursuit,OMP)计算,分别得到全色与多光谱影像的稀疏系数,采用非负矩阵分解(nonnegative matrix factor,NMF)融合算法得到融合影像的稀疏系数,进行重构生成融合影像。对字典矩阵大小的研究,考虑到重构图像的均方根误差与计算机运算的限制,最终确定稀疏字典矩阵大小为64像元×480像元。采用5种定量融合评定指标对本文方法与联合字典NMF方法、小波方法和PCA方法的影像融合结果进行分析比较,结果表明本文方法既可提高融合影像的纹理细节信息,也能较好地保持多光谱信息,获得更好的融合效果。 展开更多
关键词 PCA联合稀疏字典 在线字典学习法 OMP算 NMF融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部