期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的视觉目标跟踪算法 被引量:2
1
作者 周洁 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2018年第2期121-126,共6页
提出一种基于深度学习的视觉单目标跟踪方法.该方法在统一的网络框架下处理在线视觉单目标跟踪问题,在获取输入视频帧的基础上,通过结合贝叶斯损耗层的深度卷积神经网络来估计正负样本集的概率密度分布并计算出所有目标候选位置的得分,... 提出一种基于深度学习的视觉单目标跟踪方法.该方法在统一的网络框架下处理在线视觉单目标跟踪问题,在获取输入视频帧的基础上,通过结合贝叶斯损耗层的深度卷积神经网络来估计正负样本集的概率密度分布并计算出所有目标候选位置的得分,继而利用贝叶斯分类确认目标位置.针对正样本集个数有限的问题,该网络采用先对通用的目标特征进行预离线训练,然后通过多个步骤进行微调,在线微调主要是对每一帧中的图像外形特征进行学习.此外,该方法采用两级迭代算法自适应地更新网络参数并保持目标/非目标地区的概率密度.仿真实验表明了所提算法的有效性和可靠性. 展开更多
关键词 目标跟踪 深度学习 在线特征学习 在线密度估计
下载PDF
Moving least squares-based multi-functional sensing technique for estimating viscosity and density of ternary solution
2
作者 刘丹 魏国 +1 位作者 孙金玮 刘昕 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第4期460-464,共5页
In the osmotic dehydration process of food,on-line estimation of concentrations of two components in ternary solution with NaCl and sucrose was performed based on multi-functional sensing technique.Moving Least Square... In the osmotic dehydration process of food,on-line estimation of concentrations of two components in ternary solution with NaCl and sucrose was performed based on multi-functional sensing technique.Moving Least Squares were adopted in approximation procedure to estimate the viscosity of such interested ternary solution with the given data set.As a result,in one mode of using total experimental data as calibration data and validation data,the relative deviations of estimated viscosities are less than ±1.24%.In the other mode,by taking total experimental data except the ones for estimation as calibration data,the relative deviations are less than ±3.47%.In the same way,the density of ternary solution can be also estimated with deviations less than ± 0.11% and ± 0.30% respectively in these two models.The satisfactory and accurate results show the extraordinary efficiency of Moving Least Squares behaved in signal approximation for multi-functional sensors. 展开更多
关键词 viscosity estimation density estimation Moving Least Squares ternary solution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部