期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
元宇宙理念下的沉浸式第三代在线教育模型研究 被引量:13
1
作者 曾海 廖瑞云 邱崇光 《中国教育信息化》 2022年第1期38-45,共8页
相对于面授教育,在线教育普遍存在学习驱动力不足、学习投入度不够等状况。随着元宇宙理念的提出,第三代沉浸式互联网、VR/AR、5G等支撑技术也逐步成熟。由于新冠肺炎疫情防控的常态化,许多教学和培训转移到网上进行,表现出对优秀在线... 相对于面授教育,在线教育普遍存在学习驱动力不足、学习投入度不够等状况。随着元宇宙理念的提出,第三代沉浸式互联网、VR/AR、5G等支撑技术也逐步成熟。由于新冠肺炎疫情防控的常态化,许多教学和培训转移到网上进行,表现出对优秀在线教育的迫切需求,元宇宙理念下的沉浸式在线教育成为重要的发展方向。文章从相关的环境学习理论和体验学习理论出发,研究了元宇宙中真实世界与虚拟世界的关系,构建了沉浸式第三代在线教育模型,提出了相应行动研究的路线图,并在智慧师训中设计虚实环境结合的沉浸式情境教学项目,进一步拓展该教学模式的优势和应用前景。 展开更多
关键词 元宇宙 AR/VR 沉浸式 在线教育模型 智慧师训
下载PDF
Research on Group User Portrait of Online Education Platform Based on Big Data
2
作者 TONG Wen-jing WANG Guo-peng +2 位作者 SONG Li-zhe HU Ya-bao SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 2024年第6期124-134,共11页
With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of... With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points. 展开更多
关键词 User portrait Online education platform RFM model Clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部