期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于极限学习机的在线参数更新方法及工业应用 被引量:1
1
作者 王再辰 程辉 赵亮 《现代电子技术》 2023年第22期126-130,共5页
针对乙烯裂解炉结焦导致裂解炉机理改变,从而引起的模型预测不准确问题,提出一种带有遗忘因子的在线序列简化核极限学习机算法(FOS-RKELM)。该算法基于在线序列的简化核极限学习机,数据可以在线实时添加到网络中,从而提高模型的适应度;... 针对乙烯裂解炉结焦导致裂解炉机理改变,从而引起的模型预测不准确问题,提出一种带有遗忘因子的在线序列简化核极限学习机算法(FOS-RKELM)。该算法基于在线序列的简化核极限学习机,数据可以在线实时添加到网络中,从而提高模型的适应度;通过引入遗忘因子提高最近学习数据对模型的贡献,增强模型在线学习的能力;引入聚类算法优化、简化核极限学习机(RKELM),提高算法的稳定性。结果表明:所提算法在Mackey-Glass时滞混沌序列上取得了较好的预测效果;在乙烯产物收率预测问题上,与在线序列简化核极限学习机(OS-RKELM)、简化核极限学习机(RKELM)、BP神经网络和径向基学习机(RBF)算法相比,该算法平均绝对误差显著减小,证明了该算法的有效性。 展开更多
关键词 在线序列简化极限学习(OS-RKELM) 简化极限学习(RKELM) 遗忘因子 在线序列 参数更新 乙烯裂解炉
下载PDF
基于K-ELM的涡桨发动机扭矩信号重构方法研究
2
作者 杨宇飞 黄庆 +1 位作者 张龙冬 黄兴 《中国科技纵横》 2023年第5期58-61,共4页
针对小型涡桨发动机高状态下输出扭矩测不准,部件模型求解扭矩实时性差的问题,提出了一种基于核极限学习机的扭矩信号重构方法。利用核极限学习机构建发动机扭矩估计器,通过当前发动机和螺旋桨状态参数预测发动机输出扭矩。将传感器采... 针对小型涡桨发动机高状态下输出扭矩测不准,部件模型求解扭矩实时性差的问题,提出了一种基于核极限学习机的扭矩信号重构方法。利用核极限学习机构建发动机扭矩估计器,通过当前发动机和螺旋桨状态参数预测发动机输出扭矩。将传感器采集的扭矩信号和估计器预测的扭矩进行加权,重构出输出的扭矩信号。引入置信区间,对重构的扭矩信号进行校验。以某涡桨发动机试验数据进行测试,结果表明:重构后的扭矩值相比于直接测量的扭矩值有更高的精度,所有状态下的误差不大于7.5%,同时也表明该方法具备一定的容错能力。 展开更多
关键词 涡桨发动 扭矩测量 在线核极限学习机 信号重构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部