期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于OGD算法的在线移动平均反转策略
1
作者
吴金明
《软件导刊》
2021年第9期119-122,共4页
为改善非平稳金融市场环境下在线投资组合策略无法实时动态调整的缺点,提出一种OGDMAR策略。基于在线梯度下降(OGD)算法,对在线移动平均反转策略的预测模型进行改进,使预测模型的系数在每次迭代时都可重新调整。在4个经典数据集上进行...
为改善非平稳金融市场环境下在线投资组合策略无法实时动态调整的缺点,提出一种OGDMAR策略。基于在线梯度下降(OGD)算法,对在线移动平均反转策略的预测模型进行改进,使预测模型的系数在每次迭代时都可重新调整。在4个经典数据集上进行数值实验,结果表明,与原策略的累积收益相比,改进策略在4个数据集上分别提升了111%、134%、32%和48%,并且在不同的交易成本条件下累积的收益更高。OGDMAR策略具有应对非平稳环境的能力,不仅在累积收益方面有显著提升,而且具有更强的交易成本承受能力。
展开更多
关键词
在线
投资组合选择
在线梯度下降算法
均值反转
简单移动平均
下载PDF
职称材料
基于Wasserstein距离的在线机器学习算法研究
被引量:
3
2
作者
李兆恩
张智海
《中国科学:技术科学》
EI
CSCD
北大核心
2023年第7期1031-1042,共12页
本文主要研究基于Wasserstein距离的在线机器学习算法,并分别针对分类和回归问题,提出两个鲁棒的在线学习算法.本文首先在特征-标签空间中对Wasserstein距离进行变形,得到了易于处理和计算的变形式.进而,将在线梯度下降(online gradient...
本文主要研究基于Wasserstein距离的在线机器学习算法,并分别针对分类和回归问题,提出两个鲁棒的在线学习算法.本文首先在特征-标签空间中对Wasserstein距离进行变形,得到了易于处理和计算的变形式.进而,将在线梯度下降(online gradient descent,OGD)算法和Wasserstein距离变形式结合,分别针对在线分类问题和在线回归问题提出了两种具有较好鲁棒性的在线机器学习算法.文章对提出的新算法累积误差值(Regret,后面用Regret指代)进行了分析,证明了算法的Regret与训练轮次T满足O(√T)关系.算法的收敛性可基于算法Regret分析得到,可证明在算法训练轮次T趋于无穷时,算法训练出的模型会收敛到理论最优模型.最后,将所提出算法与FTRL(follow-the-regularized-leader)算法、OGD算法、采用批量学习训练方法的机器学习算法进行数值实验对比.在模拟数据集和真实数据集的实验中,所提出在线学习算法准确率、鲁棒性和模型泛化性能均优于FTRL算法和OGD算法;针对大规模数据集时,虽然所提出的在线学习算法准确率与批量学习相关算法相近,但在线学习算法可以大量节省每次输入新数据后的训练时间和数据存储空间;在数据量较小且数据质量较差时,在线学习算法鲁棒性和模型泛化性能表现更优,甚至优于批量学习相关算法.
展开更多
关键词
Wasserstein距离
在线
机器学习
在线梯度下降算法
算法
累积误差值
原文传递
题名
基于OGD算法的在线移动平均反转策略
1
作者
吴金明
机构
上海工程技术大学数理与统计学院
出处
《软件导刊》
2021年第9期119-122,共4页
文摘
为改善非平稳金融市场环境下在线投资组合策略无法实时动态调整的缺点,提出一种OGDMAR策略。基于在线梯度下降(OGD)算法,对在线移动平均反转策略的预测模型进行改进,使预测模型的系数在每次迭代时都可重新调整。在4个经典数据集上进行数值实验,结果表明,与原策略的累积收益相比,改进策略在4个数据集上分别提升了111%、134%、32%和48%,并且在不同的交易成本条件下累积的收益更高。OGDMAR策略具有应对非平稳环境的能力,不仅在累积收益方面有显著提升,而且具有更强的交易成本承受能力。
关键词
在线
投资组合选择
在线梯度下降算法
均值反转
简单移动平均
Keywords
online portfolio selection
online gradient descent algorithm
mean reversion
simple moving average
分类号
TP301 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
基于Wasserstein距离的在线机器学习算法研究
被引量:
3
2
作者
李兆恩
张智海
机构
清华大学工业工程系
出处
《中国科学:技术科学》
EI
CSCD
北大核心
2023年第7期1031-1042,共12页
基金
国家自然科学基金联合基金专家库构建方法及策略研究项目(编号:J2124091)资助。
文摘
本文主要研究基于Wasserstein距离的在线机器学习算法,并分别针对分类和回归问题,提出两个鲁棒的在线学习算法.本文首先在特征-标签空间中对Wasserstein距离进行变形,得到了易于处理和计算的变形式.进而,将在线梯度下降(online gradient descent,OGD)算法和Wasserstein距离变形式结合,分别针对在线分类问题和在线回归问题提出了两种具有较好鲁棒性的在线机器学习算法.文章对提出的新算法累积误差值(Regret,后面用Regret指代)进行了分析,证明了算法的Regret与训练轮次T满足O(√T)关系.算法的收敛性可基于算法Regret分析得到,可证明在算法训练轮次T趋于无穷时,算法训练出的模型会收敛到理论最优模型.最后,将所提出算法与FTRL(follow-the-regularized-leader)算法、OGD算法、采用批量学习训练方法的机器学习算法进行数值实验对比.在模拟数据集和真实数据集的实验中,所提出在线学习算法准确率、鲁棒性和模型泛化性能均优于FTRL算法和OGD算法;针对大规模数据集时,虽然所提出的在线学习算法准确率与批量学习相关算法相近,但在线学习算法可以大量节省每次输入新数据后的训练时间和数据存储空间;在数据量较小且数据质量较差时,在线学习算法鲁棒性和模型泛化性能表现更优,甚至优于批量学习相关算法.
关键词
Wasserstein距离
在线
机器学习
在线梯度下降算法
算法
累积误差值
Keywords
Wasserstein distance
online machine learning
OGD algorithm
regret
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于OGD算法的在线移动平均反转策略
吴金明
《软件导刊》
2021
0
下载PDF
职称材料
2
基于Wasserstein距离的在线机器学习算法研究
李兆恩
张智海
《中国科学:技术科学》
EI
CSCD
北大核心
2023
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部