现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector d...现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector data description-relevance vector regression,DBSVDD-RVR)的间歇过程质量变量在线软测量方法。依据间歇过程离线模态划分获得的各稳定及过渡模态历史数据,建立DBSVDD在线模态识别模型,并引入滑动窗,构建间歇过程在线模态识别策略,利用DBSVDD模型实现在线测量数据的模态识别;在此基础上,构建了基于超球体距离的数据相似度计算方法,选择过渡模态在线数据的相似建模数据集,建立过渡模态的即时学习RVR软测量模型,并依据历史数据建立各稳定模态的RVR软测量模型,实现间歇过程质量变量的在线软测量。青霉素发酵过程的实验结果表明,所提方法有效地提高了间歇过程模态识别的合理性和质量变量在线软测量的准确性。展开更多
This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va...This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.展开更多
Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensin...Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.展开更多
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta...On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.展开更多
文摘现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector data description-relevance vector regression,DBSVDD-RVR)的间歇过程质量变量在线软测量方法。依据间歇过程离线模态划分获得的各稳定及过渡模态历史数据,建立DBSVDD在线模态识别模型,并引入滑动窗,构建间歇过程在线模态识别策略,利用DBSVDD模型实现在线测量数据的模态识别;在此基础上,构建了基于超球体距离的数据相似度计算方法,选择过渡模态在线数据的相似建模数据集,建立过渡模态的即时学习RVR软测量模型,并依据历史数据建立各稳定模态的RVR软测量模型,实现间歇过程质量变量的在线软测量。青霉素发酵过程的实验结果表明,所提方法有效地提高了间歇过程模态识别的合理性和质量变量在线软测量的准确性。
文摘This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.
基金Supported by the National Natural Science Foundation of China(20476007 20676013)
文摘On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.