With on-line coupled thermo-gravimetric technique, the thermal decomposition of analyzer-Fourier transform infrared spectrometer lithium hexafluorophosphate (LiPF6) and its gas evolution at inert environment (H2O〈...With on-line coupled thermo-gravimetric technique, the thermal decomposition of analyzer-Fourier transform infrared spectrometer lithium hexafluorophosphate (LiPF6) and its gas evolution at inert environment (H2O〈10 ppm) were studied under both non-isothermal and isothermal conditions. The results showed that the LiPF6 decomposition is a single-stage reaction with LiF as final residue and PF5 as gas product. In addition, its decomposi- tion kinetics was determined as 2D phase boundary movement (cylindrical symmetry) under both non-isothermal and isothermal conditions. Furthermore, the activation energy of LiPF6 decomposition was calculated as 104 and 92 kJ/mol for non-isothermal and isothermal con- ditions, respectively.展开更多
文摘With on-line coupled thermo-gravimetric technique, the thermal decomposition of analyzer-Fourier transform infrared spectrometer lithium hexafluorophosphate (LiPF6) and its gas evolution at inert environment (H2O〈10 ppm) were studied under both non-isothermal and isothermal conditions. The results showed that the LiPF6 decomposition is a single-stage reaction with LiF as final residue and PF5 as gas product. In addition, its decomposi- tion kinetics was determined as 2D phase boundary movement (cylindrical symmetry) under both non-isothermal and isothermal conditions. Furthermore, the activation energy of LiPF6 decomposition was calculated as 104 and 92 kJ/mol for non-isothermal and isothermal con- ditions, respectively.