期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的车辆和行人检测算法 被引量:3
1
作者 潘婷 周武杰 顾鹏笠 《浙江科技学院学报》 CAS 2018年第5期398-403,共6页
针对传统的车辆和行人检测算法在提取特征时鲁棒性较差的问题,提出一种基于深度学习的车辆和行人检测算法。该算法利用更快速的区域卷积神经网络(Faster RCNN)开源框架和Squeezenet网络,通过在线负样本学习(OHEM)算法和可变的非极大值抑... 针对传统的车辆和行人检测算法在提取特征时鲁棒性较差的问题,提出一种基于深度学习的车辆和行人检测算法。该算法利用更快速的区域卷积神经网络(Faster RCNN)开源框架和Squeezenet网络,通过在线负样本学习(OHEM)算法和可变的非极大值抑制(Soft-NMS)算法来改进算法的检测精度。首先采用Squeezenet网络框架对图片提取特征,然后通过区域提取网络算法(RPN)获取图片中待检测的区域,最后在检测阶段加入OHEM算法对疑难样本进行重新学习和Soft-NMS抑制重叠矩形框,从而得到目标的得分和边界框。结果表明,基于卷积神经网络的车辆和行人检测算法能够获得较好的检测效果。 展开更多
关键词 目标检测 Squeezenet网络 更快速的区域卷积神经网络 在线负样本学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部