期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于AdaBoost算法的在线连续极限学习机集成算法 被引量:2
1
作者 蔡静 《软件导刊》 2017年第4期49-51,共3页
针对不均衡数据处理问题,提出一种AdaBoost与在线连续极限学习机的集成算法。用在线连续极限学习机(OSELM)作为基分类器,根据AdaBoost集成各个基分类器,用AdaBoost集成分类器的权值,得出最终结果。实验结果表明,该方法具有较高的准确率。
关键词 ADABOOST 在线连续极限学习机 集成算法
下载PDF
基于极限学习机集成的气候变化预测研究
2
作者 杨帆 张永 刘文哲 《软件导刊》 2016年第3期141-143,共3页
气候变化预测问题研究迫在眉睫。提出一种基于粒子群优化的集成算法,用在线连续极限学习机作为基分类器,根据不同的激励函数集成基分类器,用粒子群算法优化集成分类器的权值,投票得出最终结果。实验结果表明,该方法与基于梯度的算法相比... 气候变化预测问题研究迫在眉睫。提出一种基于粒子群优化的集成算法,用在线连续极限学习机作为基分类器,根据不同的激励函数集成基分类器,用粒子群算法优化集成分类器的权值,投票得出最终结果。实验结果表明,该方法与基于梯度的算法相比,具有较高的准确率、g-mean及较好的灵活性。 展开更多
关键词 粒子群 在线连续极限学习机 集成算法 投票算法
下载PDF
基于Spark的OS-ELM并行化算法 被引量:2
3
作者 邓万宇 杨丽霞 《西安邮电大学学报》 2016年第2期101-104,118,共5页
针对Spark平台的弹性分布式数据集并行计算框架机制,提出一种在线连续极限学习机并行处理的改进算法。利用分离在线连续极限学习机矩阵之间的依赖关系,将大规模数据中的高度复杂的矩阵分布到Spark集群中并行化计算,并行计算多个增量数... 针对Spark平台的弹性分布式数据集并行计算框架机制,提出一种在线连续极限学习机并行处理的改进算法。利用分离在线连续极限学习机矩阵之间的依赖关系,将大规模数据中的高度复杂的矩阵分布到Spark集群中并行化计算,并行计算多个增量数据块的隐藏层输出矩阵,实现OS-ELM对矩阵的加速求解。实验结果表明,该算法在保持精度的同时可有效缩短学习时间,改善了大数据的扩展能力。 展开更多
关键词 在线连续极限学习机 大数据 SPARK 并行计算
下载PDF
基于PCOS-ELM的室内指纹定位算法 被引量:1
4
作者 朱顺涛 卢先领 《传感器与微系统》 CSCD 2018年第8期143-146,共4页
针对传统室内指纹定位算法存在定位精度低、对环境适应能力差的问题,提出了一种基于并行混沌优化的在线连续极限学习机(PCOS-ELM)定位算法。离线阶段,通过并行混沌优化算法(PCOA)对极限学习机的隐含层节点参数进行寻优并构建高精度初始... 针对传统室内指纹定位算法存在定位精度低、对环境适应能力差的问题,提出了一种基于并行混沌优化的在线连续极限学习机(PCOS-ELM)定位算法。离线阶段,通过并行混沌优化算法(PCOA)对极限学习机的隐含层节点参数进行寻优并构建高精度初始定位模型;在线阶段,利用在线连续极限学习机(OS-ELM)使新增位置指纹数据对定位模型进行动态调整,以适应室内环境的变化。结果表明:提出的PCOS-ELM定位算法具有更高的定位精度和更好的环境适应性。 展开更多
关键词 室内定位 位置指纹 并行混沌优化算法 在线连续极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部