期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种克服sEMG人机交互中肌肉疲劳的SVM算法 被引量:5
1
作者 张毅 祝翔 罗元 《控制工程》 CSCD 北大核心 2014年第4期467-471,共5页
在基于表面肌电信号的人机交互系统中,产生的肌肉疲劳降低了系统的稳定性。针对该问题,分析肌肉正常状态和疲劳状态下的肌电信号变化规律,提出一种改进的在线支持向量机增量训练算法。该算法在每次训练SVM(Support Vector Machine)模型... 在基于表面肌电信号的人机交互系统中,产生的肌肉疲劳降低了系统的稳定性。针对该问题,分析肌肉正常状态和疲劳状态下的肌电信号变化规律,提出一种改进的在线支持向量机增量训练算法。该算法在每次训练SVM(Support Vector Machine)模型时,计算各样本到分类超平面的距离,并以之为条件对不断更新的训练数据进行有条件的选择和遗忘,只留下最大距离1/2以内的数据。通过在线训练不断更新训练样本来获得新的SVM模型,用于适应肌肉疲劳过程中肌电信号的变化,同时防止多次在线训练过程中更新的样本改变训练集间初始边界。最后在智能轮椅上进行验证,实验结果表明:该算法有效减少了肌肉疲劳在人机交互系统中的影响,使得系统能够保持长时间稳定操作。 展开更多
关键词 sEMG人机交互 肌肉疲劳 在线svm 改进的增量训练算法
下载PDF
基于在线增量学习支持向量机的径流预测 被引量:1
2
作者 卢家海 《水利科技与经济》 2017年第7期16-19,共4页
针对传统SVM模型及非增量SVM模型在训练过程中会产生冗余向量且效果差的问题,提出在线增量学习SVM预测模型,并利用祁县来远镇盘陀村昌源河上盘陀水文站的月径流历史资料进行的仿真测试。结果显示,在线增量学习SVM模型较传统的SVM模型有... 针对传统SVM模型及非增量SVM模型在训练过程中会产生冗余向量且效果差的问题,提出在线增量学习SVM预测模型,并利用祁县来远镇盘陀村昌源河上盘陀水文站的月径流历史资料进行的仿真测试。结果显示,在线增量学习SVM模型较传统的SVM模型有较高的预测精度。 展开更多
关键词 在线增量学习svm 径流预测 svm模型
下载PDF
采用核相关滤波器的长期目标跟踪 被引量:28
3
作者 杨德东 蔡玉柱 +1 位作者 毛宁 杨福才 《光学精密工程》 EI CAS CSCD 北大核心 2016年第8期2037-2049,共13页
针对核相关滤波器(KCF)跟踪算法在目标跟踪中存在尺度变化、严重遮挡、相似目标干扰和出视野情况下跟踪失败等问题,提出了一种基于KCF的长期目标跟踪算法。该算法在分类器学习中加入空间正则化,利用基于样本区域空间位置信息的空间权重... 针对核相关滤波器(KCF)跟踪算法在目标跟踪中存在尺度变化、严重遮挡、相似目标干扰和出视野情况下跟踪失败等问题,提出了一种基于KCF的长期目标跟踪算法。该算法在分类器学习中加入空间正则化,利用基于样本区域空间位置信息的空间权重函数调节分类器系数,使分类器学习到更多负样本和未破坏的正样本,从而增强学习模型的判别力。然后,在检测区域利用Newton方法完成迭代处理,求取分类器最大响应位置及其目标尺度信息。最后,对最大响应位置的目标进行置信度比较,训练在线支持向量机(SVM)分类器,以便在跟踪失败的情况下,重新检测到目标而实现长期跟踪。采用OTB-2013评估基准50组视频序列验证了本文算法的有效性,并与30种其他跟踪方法进行了对比。结果表明:本文提出的算法跟踪精度为0.813,成功率为0.629,排名第一,相比传统KCF算法分别提高了9.86%和22.3%。在目标发生显著尺度变化、严重遮挡、相似目标干扰和出视野等复杂情况下,本文方法均具有较强的鲁棒性。 展开更多
关键词 核相关滤波器 长期目标跟踪 空间正则化 支持向量机(svm) 在线svm分类器
下载PDF
On-line least squares support vector machine algorithm in gas prediction 被引量:21
4
作者 ZHAO Xiao-hu WANG Gang ZHAO Ke-ke TAN De-jian 《Mining Science and Technology》 EI CAS 2009年第2期194-198,共5页
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ... Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm. 展开更多
关键词 LS-svm GAS on-line learning PREDICTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部