期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习算法的滴灌棉花地上部氮浓度估测模型研究
1
作者 王鹏翔 陈翔宇 +4 位作者 魏春月 马怡茹 秦诗哲 周泽轩 张泽 《中国农学通报》 2024年第4期148-157,共10页
地上部氮浓度是准确诊断作物氮素丰缺进而评价其生长状况的重要指标。通过构建基于高光谱的滴灌棉花地上部氮浓度估测模型,实现棉花氮素含量的实时、无损、精确获取,为精准施肥提供理论依据和技术支撑。以新疆北部主栽棉花‘新陆早45号... 地上部氮浓度是准确诊断作物氮素丰缺进而评价其生长状况的重要指标。通过构建基于高光谱的滴灌棉花地上部氮浓度估测模型,实现棉花氮素含量的实时、无损、精确获取,为精准施肥提供理论依据和技术支撑。以新疆北部主栽棉花‘新陆早45号’和‘新陆早53号’为供试品种,设置6个施纯氮处理(0、120、240、348、360、480 kg/hm^(2)),测量棉花冠层高光谱信息,利用函数变换去除冗余,一阶与二阶导数筛选结果相似,倒数的对数筛选结果较为分散。采用机器学习权重排序进行特征筛选,共选出359、371、751、752、746、739、755 nm等7个特征波段。同时遍历波长组合,优化前人研究与氮素高相关的植被指数,共选出RVI′_(810,460)、NDVI′_(811,856)、NDVI′_(750,705)、RVI′_(740,720)、RVI′_(851,852)、DVI′_(359,360)、NDVI′_(851,852)等7个光谱指数。将筛选得到的特征波段与植被指数分别利用岭回归、决策树、引导聚类、增强学习算法与棉花氮素建立养分估测模型,最终Adaboost迭代算法所建立滴灌棉花地上部氮浓度估测模型效果最优,模型精度R^(2)达到0.911,RMSE为1.362。利用光谱信息可以有效反演棉花氮营养状态,基于植被指数构建的模型估测精度较特征波段更为稳定;对现有的植被指数特征波段进行优化,可以有效提升模型的估测精度;对比分析不同建模方式下模型精度,集成学习相比单机器学习在进行棉花氮营养估测时更有优势。 展开更多
关键词 棉花冠层 高光谱 地上部氮浓度 植被指数 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部