Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in ...Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m^3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 10^9 $ to 42.7× 10^9 $ and the urban area from 184 km^2 to 1,038 km^2 (built-up city area from 41.3 km^2 to 81.9 km^2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85x 10^7 m^3(1978) to 1.34× 10^8 m^3 (1991) and now maintained at 0.1× 10^9 m^3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca^2+, Mg^2+, NO3^-, SO4^2- and C1^- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the piezometric level has induced 7 karst collapses to form 17 pits and has caused an estimated US$ 10 million economic loss. These problems have influenced the quality of development in the city.展开更多
Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regim...Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regime of the Semani and Vjosa River is analyzed. These are two rivers with total different hydro-geological characteristics. Vjosa river watershed is mainly composed of massif calcareous rocks that are streaky and karstifled. A totally different view is in the other river, in Seman where the impermeable rocks dominate. Even the distribution of the precipitation is quite different. In the Vjosa River the amount of the precipitation varies from 1,500 mm to 2,500 mm per year and in Semani River only 1,100 mm per year. The flow in the wet period is mainly a result of the precipitation and the minimum discharge occurs during the dry period representing the base flow that is the contribution from the groundwater. In this point of view the flow in the dry period is also an indicator of the underground water resource. During the dry period the watershed gives what it received and what has cumulated during the wet period. This is more evident in the case of a karstic watershed. The recession curves were analysed for all the hydrometric stations in both river basins and the parameters of these curves are evaluated. These results are analyzed and compared between the two different watersheds reflecting the differences on water exchange of surface and ground water. Finally, an assessment of groundwater resources in both hydro geological basins is worked out.展开更多
The main oil-bearing formation of Area 4 of Tahe oilfield is in Yingshan Group of Ordovician consisted of thick pure limestone. The types of the pore space contain the pore, fissure, cave as well as fracture formed by...The main oil-bearing formation of Area 4 of Tahe oilfield is in Yingshan Group of Ordovician consisted of thick pure limestone. The types of the pore space contain the pore, fissure, cave as well as fracture formed by solution collapse. The primary porosity and tectonic fracture are of poor growth. Therefore, the formation growth is mainly controlled by hydraulic units of the palaeo-karst. There are three palaeo-hydraulic zones: vadose zone (including infiltration sub-zone and percolation sub-zone), phreatic zone and tranquil zone. They are identified by retrieving the palaeo-geographical karst environment. The pore space of the infiltration zone is mainly solution fissures, small solution cavities and solution pores. The growth and lateral connection of the formation are favorable. The reservoir/formation ratio is 0. 54. The pore space of the phreatic zone developed large size cavities and fractures related to cave collapse. The height of the cavity can reach 71m. The fractures by collapse have a influencing range of more than 100m, and its reservoir/formation ratio is 0. 51. But the lateral connection is unfavorable. The percolation subzone and the tranquil zone are of relatively poor growth with the reservoir/ formation ratio less than 0. 3.展开更多
基金Project 40373044 supported by the National Natural Science Foundation of China
文摘Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m^3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 10^9 $ to 42.7× 10^9 $ and the urban area from 184 km^2 to 1,038 km^2 (built-up city area from 41.3 km^2 to 81.9 km^2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85x 10^7 m^3(1978) to 1.34× 10^8 m^3 (1991) and now maintained at 0.1× 10^9 m^3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca^2+, Mg^2+, NO3^-, SO4^2- and C1^- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the piezometric level has induced 7 karst collapses to form 17 pits and has caused an estimated US$ 10 million economic loss. These problems have influenced the quality of development in the city.
文摘Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regime of the Semani and Vjosa River is analyzed. These are two rivers with total different hydro-geological characteristics. Vjosa river watershed is mainly composed of massif calcareous rocks that are streaky and karstifled. A totally different view is in the other river, in Seman where the impermeable rocks dominate. Even the distribution of the precipitation is quite different. In the Vjosa River the amount of the precipitation varies from 1,500 mm to 2,500 mm per year and in Semani River only 1,100 mm per year. The flow in the wet period is mainly a result of the precipitation and the minimum discharge occurs during the dry period representing the base flow that is the contribution from the groundwater. In this point of view the flow in the dry period is also an indicator of the underground water resource. During the dry period the watershed gives what it received and what has cumulated during the wet period. This is more evident in the case of a karstic watershed. The recession curves were analysed for all the hydrometric stations in both river basins and the parameters of these curves are evaluated. These results are analyzed and compared between the two different watersheds reflecting the differences on water exchange of surface and ground water. Finally, an assessment of groundwater resources in both hydro geological basins is worked out.
文摘The main oil-bearing formation of Area 4 of Tahe oilfield is in Yingshan Group of Ordovician consisted of thick pure limestone. The types of the pore space contain the pore, fissure, cave as well as fracture formed by solution collapse. The primary porosity and tectonic fracture are of poor growth. Therefore, the formation growth is mainly controlled by hydraulic units of the palaeo-karst. There are three palaeo-hydraulic zones: vadose zone (including infiltration sub-zone and percolation sub-zone), phreatic zone and tranquil zone. They are identified by retrieving the palaeo-geographical karst environment. The pore space of the infiltration zone is mainly solution fissures, small solution cavities and solution pores. The growth and lateral connection of the formation are favorable. The reservoir/formation ratio is 0. 54. The pore space of the phreatic zone developed large size cavities and fractures related to cave collapse. The height of the cavity can reach 71m. The fractures by collapse have a influencing range of more than 100m, and its reservoir/formation ratio is 0. 51. But the lateral connection is unfavorable. The percolation subzone and the tranquil zone are of relatively poor growth with the reservoir/ formation ratio less than 0. 3.