For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was cl...For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was classified into nine categories by type, i.e., Ca-HCO3, Na-HCO3, Na-HCO3-SO4-Cl, Na-HCO3-SO4, Na-Cl, Na-Cl-HCO3, Na-Ca- HCO3, Ca-Cl-HCO3 and Ca-HCO3-SO4-Cl. A principal component analysis was carried out in order to analyze the groundwater environment. From this analysis we considered that the information collected could be represented by 21 indices from which we extracted seven principal components, which, respectively, accounted for 37.4%, 13.0%, 8.1%, 7.2%, 6.3%, 5.9% and 4.6% of the total variation. The results show that the groundwater environment of this region is largely determined by characteristic components of the natural groundwater background. One part of the water was polluted by leaching/eluviation of solid waste generated from coal mining. Another part of the ground water was contaminated by acid mine water from the coal layer and from improper irrigation. In addition, geological and hydrogeological conditions also cause changes in the water environment.展开更多
In the process of city construction, as a comprised factor of city geological environment, underground water takes the most active part, and its dynamic change is fiercest. The city construction unceasingly disturbs u...In the process of city construction, as a comprised factor of city geological environment, underground water takes the most active part, and its dynamic change is fiercest. The city construction unceasingly disturbs underground water chemical, dynamical, physical and biological field. In return, the four fields' changes also can affect the geological environment that city lived by, in other words they affect safety and stability of geological environment. Interaction of underground water and the geoenvironment directly displays in the following two ways: The first is that the underground water and the geological body transfer the energy each other; the second is that the strength balance of geological body is broken. Underground water variation brought about by city construction is the factor which cannot be neglected. Underground water variation on the one hand changes soils or rocks' physical, biological, chemical and mechanical properties, then influences the deformation and strength of geological body. On the other hand it changes its own physical, chemical properties and biochemical component. At present, from mechanics aspect, interaction between chemical field and biological field variation of the underground water and the geological body lacks research. Although interaction between them is long-term, slow, but when it compared with water-soil or water-rock interaction in the entire process of formation of rocks or soils or geologic evolution history, the qualitative change of the biological and chemical action of rocks or soils brought about by city construction is remarkable, in this paper, aiming at underground water biological field factor which is easily neglected by people, it analyzes that underground water biological field affects possible mechanism and approach of properties variation of rocks or soils in city construction, brings forward further research method and development direction have been also proposed.展开更多
基金Project 2004-295 supported by the Trans-century Scientific Great Project of Ministry of Education of China
文摘For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was classified into nine categories by type, i.e., Ca-HCO3, Na-HCO3, Na-HCO3-SO4-Cl, Na-HCO3-SO4, Na-Cl, Na-Cl-HCO3, Na-Ca- HCO3, Ca-Cl-HCO3 and Ca-HCO3-SO4-Cl. A principal component analysis was carried out in order to analyze the groundwater environment. From this analysis we considered that the information collected could be represented by 21 indices from which we extracted seven principal components, which, respectively, accounted for 37.4%, 13.0%, 8.1%, 7.2%, 6.3%, 5.9% and 4.6% of the total variation. The results show that the groundwater environment of this region is largely determined by characteristic components of the natural groundwater background. One part of the water was polluted by leaching/eluviation of solid waste generated from coal mining. Another part of the ground water was contaminated by acid mine water from the coal layer and from improper irrigation. In addition, geological and hydrogeological conditions also cause changes in the water environment.
基金Acknowledgments: This work is keystone items of Ministry of Education P.R.C (No. [2003]77), National Natural Science Foundation of China (No. 40062002), Natural Science Foundation of Guangxi (Nos. 0447001, 0249010, 0575019, 0779012, 0632006-1B, RC2007001) and Department of Water Resources of Guangxi (No. [2004]4).
文摘In the process of city construction, as a comprised factor of city geological environment, underground water takes the most active part, and its dynamic change is fiercest. The city construction unceasingly disturbs underground water chemical, dynamical, physical and biological field. In return, the four fields' changes also can affect the geological environment that city lived by, in other words they affect safety and stability of geological environment. Interaction of underground water and the geoenvironment directly displays in the following two ways: The first is that the underground water and the geological body transfer the energy each other; the second is that the strength balance of geological body is broken. Underground water variation brought about by city construction is the factor which cannot be neglected. Underground water variation on the one hand changes soils or rocks' physical, biological, chemical and mechanical properties, then influences the deformation and strength of geological body. On the other hand it changes its own physical, chemical properties and biochemical component. At present, from mechanics aspect, interaction between chemical field and biological field variation of the underground water and the geological body lacks research. Although interaction between them is long-term, slow, but when it compared with water-soil or water-rock interaction in the entire process of formation of rocks or soils or geologic evolution history, the qualitative change of the biological and chemical action of rocks or soils brought about by city construction is remarkable, in this paper, aiming at underground water biological field factor which is easily neglected by people, it analyzes that underground water biological field affects possible mechanism and approach of properties variation of rocks or soils in city construction, brings forward further research method and development direction have been also proposed.