With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of th...With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.展开更多
To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head...To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head- stream analysis was trained on the water sample of available headstreams, and then we used this to predict the unknown samples, which were validated in practice by comparing the predicted results with the actual results. The experimental results show that the SVM is a feasible method to differentiate between two headstreams and the H-SVMs (Hierachical SVMs) is a preferable way to deal with the problem of multi-headstreams. Compared with other methods, the SVM is based on a strict mathematical theory with a simple structure and good generalization properties. As well, the support vector W in the decision function can describe the weights of the recognition factors of water samples, which is very important for the analysis of headstreams of gushing water in coal mines.展开更多
Recurrent droughts and occasional floods are the facts of life in drylands. The presence of innumerable societies in deserts is the living proof that even the extremely dry environments are livable; the secret is how ...Recurrent droughts and occasional floods are the facts of life in drylands. The presence of innumerable societies in deserts is the living proof that even the extremely dry environments are livable; the secret is how to adapt to the situation. Floodwater management, the most important art of sedentarized desert dwellers, is the secret of living with deserts. Floodwater irrigation alone, or in combination with the artificial recharge of groundwater (ARG), has sustained the Persians for millennia. The scientists at the Kowsar Floodwater Spreading and Aquifer Management Research, Training and Extension Station in the Gareh Bygone Plain have been working since January 1983 to revive this ancient art and upgrade it to the level of science. A summary of important findings is provided as follows: 1. Debris cones and coarse alluvial fans are the best places for the ARG as they provide the potential aquifer for groundwater storage. The recharged water may be used for irrigation on the lower lying, fine alluvium; 2. Flood is not a proverbial curse but a blessing in disguise, and the turbid floodwater is the best resource for the sustainable development of drylands; 3. Translocation of fine clay minerals eventually makes the vadose zone impermeable. Planting deep-rooted, drought-resistent trees and shrubs, and introducing sowbugs (Hemilepistus shirazi Schuttz) are reliable methods to increase infiltration rate and the saturated hydraulic conductivity of the ARG systems; 4. The moving sand stabilization is best achieved by spreading turbid floodwater onto them. Establishing of living windbreaks and planting of fodder trees and shrubs turn a sand menace into a verdant pasture; 5. The 10 year average of native forage yield in the ARG systems has been 445 kg·ha^-1·year^-1 as opposed to 92 kg·ha^-1.year^-1 for the control. At 4×4 m^2 spacing, Atriplex lentiformis (Torr.) Wats. can annually yield 1500 kg ha^-1 of dry matter and support 3 heads of sheep; 6. The stem- and fuel wood yield of 18 year old Eucalyptus camaldulensis Dehnh. in the ARG system have been 4,684 and 781 kg·ha^-1.year^-1, respectively. The mean annual carbon sequestration of this tree has been 2.975 tons per ha; 7.Up to 80% of the diverted floodwaters reach the unconfined aquifer. As evaporation practically wastes large volumes of water in surface reservoirs, storing water underground is logical in deserts; 8. The high evaporation rate, the large sediment load, the environmental hazards, the undesirable social costs, the long time needed for the different phases of study, and the very large price tag make dam building the most hydro-illogical choice in deserts where the ARG is practicable; 9. Each 5.5 ha of the irrigated farm provides income for a family of 7.64 member and 0.38 employment opportunities for a farm hand. On average, 4-ha of an ARG system provides one full time job for irrigation farmers. The benefit: cost ratio for this project is 22; 10. The number of wells in the area affected by the ARG activities has increased lo-fold to 130 wells, the irrigated area has increased 8-fold to 1,193 ha, and 345 job opportunities have been created in 4 villages that surround the Station.展开更多
The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the ground...The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the groundwater level. The relationship among the calculation error of groundwater level, the pumping rate, the limit of iteration convergence error, the calculation time, and the aquifer parameters were discussed by using an ideal model. Finally, the water yield of Dianzi iron mine was predicted using the testified numerical model. It is indicated that the calculation error of groundwater level is related to the limit of iteration convergence error, the calculation time and the aquifer parameters, but not to the pumping rate and the variation of groundwater level.展开更多
This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological stru...This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.展开更多
Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regim...Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regime of the Semani and Vjosa River is analyzed. These are two rivers with total different hydro-geological characteristics. Vjosa river watershed is mainly composed of massif calcareous rocks that are streaky and karstifled. A totally different view is in the other river, in Seman where the impermeable rocks dominate. Even the distribution of the precipitation is quite different. In the Vjosa River the amount of the precipitation varies from 1,500 mm to 2,500 mm per year and in Semani River only 1,100 mm per year. The flow in the wet period is mainly a result of the precipitation and the minimum discharge occurs during the dry period representing the base flow that is the contribution from the groundwater. In this point of view the flow in the dry period is also an indicator of the underground water resource. During the dry period the watershed gives what it received and what has cumulated during the wet period. This is more evident in the case of a karstic watershed. The recession curves were analysed for all the hydrometric stations in both river basins and the parameters of these curves are evaluated. These results are analyzed and compared between the two different watersheds reflecting the differences on water exchange of surface and ground water. Finally, an assessment of groundwater resources in both hydro geological basins is worked out.展开更多
基金Projects 40372123, 40772192 supported by the National Natural Science Foundation of ChinaNCET-04-0486 by the Program for New Century Excellent Talents in University of China2007CB209400 by the National Basic Research Program of China
文摘With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.
基金Project 40401038 supported by the National Natural Science Foundation of China and 2003047 by the Top 100 Outstanding Doctoral Dissertation Foun-dation of China
文摘To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head- stream analysis was trained on the water sample of available headstreams, and then we used this to predict the unknown samples, which were validated in practice by comparing the predicted results with the actual results. The experimental results show that the SVM is a feasible method to differentiate between two headstreams and the H-SVMs (Hierachical SVMs) is a preferable way to deal with the problem of multi-headstreams. Compared with other methods, the SVM is based on a strict mathematical theory with a simple structure and good generalization properties. As well, the support vector W in the decision function can describe the weights of the recognition factors of water samples, which is very important for the analysis of headstreams of gushing water in coal mines.
文摘Recurrent droughts and occasional floods are the facts of life in drylands. The presence of innumerable societies in deserts is the living proof that even the extremely dry environments are livable; the secret is how to adapt to the situation. Floodwater management, the most important art of sedentarized desert dwellers, is the secret of living with deserts. Floodwater irrigation alone, or in combination with the artificial recharge of groundwater (ARG), has sustained the Persians for millennia. The scientists at the Kowsar Floodwater Spreading and Aquifer Management Research, Training and Extension Station in the Gareh Bygone Plain have been working since January 1983 to revive this ancient art and upgrade it to the level of science. A summary of important findings is provided as follows: 1. Debris cones and coarse alluvial fans are the best places for the ARG as they provide the potential aquifer for groundwater storage. The recharged water may be used for irrigation on the lower lying, fine alluvium; 2. Flood is not a proverbial curse but a blessing in disguise, and the turbid floodwater is the best resource for the sustainable development of drylands; 3. Translocation of fine clay minerals eventually makes the vadose zone impermeable. Planting deep-rooted, drought-resistent trees and shrubs, and introducing sowbugs (Hemilepistus shirazi Schuttz) are reliable methods to increase infiltration rate and the saturated hydraulic conductivity of the ARG systems; 4. The moving sand stabilization is best achieved by spreading turbid floodwater onto them. Establishing of living windbreaks and planting of fodder trees and shrubs turn a sand menace into a verdant pasture; 5. The 10 year average of native forage yield in the ARG systems has been 445 kg·ha^-1·year^-1 as opposed to 92 kg·ha^-1.year^-1 for the control. At 4×4 m^2 spacing, Atriplex lentiformis (Torr.) Wats. can annually yield 1500 kg ha^-1 of dry matter and support 3 heads of sheep; 6. The stem- and fuel wood yield of 18 year old Eucalyptus camaldulensis Dehnh. in the ARG system have been 4,684 and 781 kg·ha^-1.year^-1, respectively. The mean annual carbon sequestration of this tree has been 2.975 tons per ha; 7.Up to 80% of the diverted floodwaters reach the unconfined aquifer. As evaporation practically wastes large volumes of water in surface reservoirs, storing water underground is logical in deserts; 8. The high evaporation rate, the large sediment load, the environmental hazards, the undesirable social costs, the long time needed for the different phases of study, and the very large price tag make dam building the most hydro-illogical choice in deserts where the ARG is practicable; 9. Each 5.5 ha of the irrigated farm provides income for a family of 7.64 member and 0.38 employment opportunities for a farm hand. On average, 4-ha of an ARG system provides one full time job for irrigation farmers. The benefit: cost ratio for this project is 22; 10. The number of wells in the area affected by the ARG activities has increased lo-fold to 130 wells, the irrigated area has increased 8-fold to 1,193 ha, and 345 job opportunities have been created in 4 villages that surround the Station.
文摘The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the groundwater level. The relationship among the calculation error of groundwater level, the pumping rate, the limit of iteration convergence error, the calculation time, and the aquifer parameters were discussed by using an ideal model. Finally, the water yield of Dianzi iron mine was predicted using the testified numerical model. It is indicated that the calculation error of groundwater level is related to the limit of iteration convergence error, the calculation time and the aquifer parameters, but not to the pumping rate and the variation of groundwater level.
文摘This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.
文摘Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regime of the Semani and Vjosa River is analyzed. These are two rivers with total different hydro-geological characteristics. Vjosa river watershed is mainly composed of massif calcareous rocks that are streaky and karstifled. A totally different view is in the other river, in Seman where the impermeable rocks dominate. Even the distribution of the precipitation is quite different. In the Vjosa River the amount of the precipitation varies from 1,500 mm to 2,500 mm per year and in Semani River only 1,100 mm per year. The flow in the wet period is mainly a result of the precipitation and the minimum discharge occurs during the dry period representing the base flow that is the contribution from the groundwater. In this point of view the flow in the dry period is also an indicator of the underground water resource. During the dry period the watershed gives what it received and what has cumulated during the wet period. This is more evident in the case of a karstic watershed. The recession curves were analysed for all the hydrometric stations in both river basins and the parameters of these curves are evaluated. These results are analyzed and compared between the two different watersheds reflecting the differences on water exchange of surface and ground water. Finally, an assessment of groundwater resources in both hydro geological basins is worked out.