Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. ...The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.展开更多
There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is abou...There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is about 2.05 × 109m3/a that is 55.8% of the recharge. Thus the evapotranspiration discharge will reduce 60.4%, while spring water reducing 35.6%. If the surface water use rate is up to 80% and coefficient of canal water use increase to 0.55 in the future, the maximum safe yield of groundwater will reduce to 1.85 × 109m3/a with the recharge reducing to 3.1 × 109m3. However, the sustainable groundwater development is depended on the protection of the quality aspect linked with the quantity aspect. In particular, protection of the glaoier and water conservation forestry in the Kunlun Mountains and coordinating development of surface water and groundwater should be taken seriously. Besides, the legislation, administrative management and the technology construction, and ability construction are also critical important and necessary.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金Project 40373044 supported by the National Natural Science Foundation of China
文摘The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.
基金the auspices of the National Natural Science Foundation of China(No. 49731010).
文摘There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is about 2.05 × 109m3/a that is 55.8% of the recharge. Thus the evapotranspiration discharge will reduce 60.4%, while spring water reducing 35.6%. If the surface water use rate is up to 80% and coefficient of canal water use increase to 0.55 in the future, the maximum safe yield of groundwater will reduce to 1.85 × 109m3/a with the recharge reducing to 3.1 × 109m3. However, the sustainable groundwater development is depended on the protection of the quality aspect linked with the quantity aspect. In particular, protection of the glaoier and water conservation forestry in the Kunlun Mountains and coordinating development of surface water and groundwater should be taken seriously. Besides, the legislation, administrative management and the technology construction, and ability construction are also critical important and necessary.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.