The theory of ecology is based on over 100 a of research and investigation, all centered on aboveground pat-terns and processes. However, as contemporary ecologists are increasingly acknowledging, belowground structur...The theory of ecology is based on over 100 a of research and investigation, all centered on aboveground pat-terns and processes. However, as contemporary ecologists are increasingly acknowledging, belowground structures, func-tions, and processes are some of the most poorly understood areas in ecology. This lack of understanding of belowground ecological processes seriously restricts the advance of global change research. The interdisciplinary field of belowground ecology began to flourish in the 1990s, along with the expan-sion of global change research, and quickly gained momen-tum. Belowground ecology aims to investigate belowground structures, functions, and processes, as well as their rela-tionships with corresponding aboveground features, empha-sizing the responses of belowground systems under global change conditions. Key research areas include root ecology, belowground animals, and soil microorganisms. This review summarizes and analyzes the relationships between above- and belowground ecosystems, root ecology, root biogeogra-phy, belowground biodiversity, as well as research areas with particular challenges and progress. This commentary em-phasizes certain theoretical issues concerning the responses of belowground processes to global change, and concludes that belowground ecology is a critical research priority in the 21st century.展开更多
Aims As the determinant of water availability in drylands,groundwater plays a fundamental role in regulating vegetation distribution and ecosystem processes.Although considerable progress has been made over the past y...Aims As the determinant of water availability in drylands,groundwater plays a fundamental role in regulating vegetation distribution and ecosystem processes.Although considerable progress has been made over the past years in the relationship between environment stress and plant community-level traits,the potential influence of water stress induced by groundwater changes on plant community-level stoichiometry remains largely unclear.Here,we examined whether belowground and aboveground community-level stoichiometry responded differently to groundwater changes.Methods We measured nitrogen(N)and phosphorus(P)concentrations in plant leaves and fine-roots of 110 plots under a broad range of groundwater depths in a typical arid inland river basin.We examined the spatial patterns and drivers of community-level N:P stoichiometry in leaves and fine-roots.Important Findings Community-level leaf and fine-root N,P and N:P ratios were mainly determined by groundwater,vegetation types and species composition,among which groundwater played a dominant role.Groundwater indirectly regulated community-level N:P stoichiometry through affecting vegetation types and species composition.Vegetation types and species composition had significant direct influences on communitylevel N:P stoichiometry.Furthermore,groundwater depth had opposite influences on community-level leaf and fine-root N:P stoichiometry.Groundwater depth regulated vegetation types and further decreased leaf N,P but increased leaf N:P ratios and fine-root N.Groundwater depth had a positive indirect impact on fine-root P but a negative indirect impact on fine-root N:P ratios primarily by affecting species composition.Our findings indicate that groundwater rather than climate conditions effectively regulates community-level N:P stoichiometry,and below-and aboveground N:P stoichiometry has opposite responses to groundwater.展开更多
文摘The theory of ecology is based on over 100 a of research and investigation, all centered on aboveground pat-terns and processes. However, as contemporary ecologists are increasingly acknowledging, belowground structures, func-tions, and processes are some of the most poorly understood areas in ecology. This lack of understanding of belowground ecological processes seriously restricts the advance of global change research. The interdisciplinary field of belowground ecology began to flourish in the 1990s, along with the expan-sion of global change research, and quickly gained momen-tum. Belowground ecology aims to investigate belowground structures, functions, and processes, as well as their rela-tionships with corresponding aboveground features, empha-sizing the responses of belowground systems under global change conditions. Key research areas include root ecology, belowground animals, and soil microorganisms. This review summarizes and analyzes the relationships between above- and belowground ecosystems, root ecology, root biogeogra-phy, belowground biodiversity, as well as research areas with particular challenges and progress. This commentary em-phasizes certain theoretical issues concerning the responses of belowground processes to global change, and concludes that belowground ecology is a critical research priority in the 21st century.
基金This work was supported by grants from National Natural Science Foundation of China(item identification numbers:31971538 and 31570610).
文摘Aims As the determinant of water availability in drylands,groundwater plays a fundamental role in regulating vegetation distribution and ecosystem processes.Although considerable progress has been made over the past years in the relationship between environment stress and plant community-level traits,the potential influence of water stress induced by groundwater changes on plant community-level stoichiometry remains largely unclear.Here,we examined whether belowground and aboveground community-level stoichiometry responded differently to groundwater changes.Methods We measured nitrogen(N)and phosphorus(P)concentrations in plant leaves and fine-roots of 110 plots under a broad range of groundwater depths in a typical arid inland river basin.We examined the spatial patterns and drivers of community-level N:P stoichiometry in leaves and fine-roots.Important Findings Community-level leaf and fine-root N,P and N:P ratios were mainly determined by groundwater,vegetation types and species composition,among which groundwater played a dominant role.Groundwater indirectly regulated community-level N:P stoichiometry through affecting vegetation types and species composition.Vegetation types and species composition had significant direct influences on communitylevel N:P stoichiometry.Furthermore,groundwater depth had opposite influences on community-level leaf and fine-root N:P stoichiometry.Groundwater depth regulated vegetation types and further decreased leaf N,P but increased leaf N:P ratios and fine-root N.Groundwater depth had a positive indirect impact on fine-root P but a negative indirect impact on fine-root N:P ratios primarily by affecting species composition.Our findings indicate that groundwater rather than climate conditions effectively regulates community-level N:P stoichiometry,and below-and aboveground N:P stoichiometry has opposite responses to groundwater.