The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ...Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.展开更多
Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table ris...Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table rises in soils, which are significantly faster and higher than those in soils without air entrapment. Two numerical models, Integrated Hydrologic Model (IHM) and HYDRUS-1D (a single-phase, one-dimensional Richards′ equation model) were tested at an area of west central Florida to help further understanding the shallow water table behavior during a long term air entrapment. This investigation employed field data with two modeling approaches to quantify the variation of air pressurization values. It was found that the air pressurization effect was responsible at time up to 40 cm of water table rise being recorded by the observation well for these two models. The values of air pressurization calculated from IHM and HYDRUS-1D match the previously published values. Results also indicated that the two numerical models did not consider air entrapment effect (as the predictive parameters remain uncertain) and thus results of depth to water table from these models did not compare to the observations for these selected periods. Incorporating air entrapment in prediction models is critical to reproduce shallow water table observations.展开更多
The potability of water wells, drilling and tap water is the determining factor for the quality management of health of the urban and rural population. This study has been done on the basis of monitoring aspect such a...The potability of water wells, drilling and tap water is the determining factor for the quality management of health of the urban and rural population. This study has been done on the basis of monitoring aspect such as pH, content ammonium, nitrate, nitrite and chloride from a physico chemical point of view. This study allowed the chemical and bacteriological analysis of samples, based on the result obtained, and the potability of water was defined. The bacteriological analysis was carried out taking account of the total flora, coliforms and Escherichia coll. This work gave rise to analyze 36 samples of water from wells, eight samples of drilling water and nine samples of water taps from municipalities such as Mamou, Dalaba and Pita. Water wells represent 90% of water supplies in drinking water to the population. In this research, collection of samples was very important. This study shows that 16 samples from 52 are potable, therefore, it is urgent to focus on the treatment of sewage in order to ensure better health for the population from administrative region of Mamou.展开更多
A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on tr...A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.展开更多
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
基金Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
文摘Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.
基金Under the auspices of National Natural Science Foundation of China (No. 40901026)International Cooperation Project of Ministry of Science and Technology of China (No. 2010DFA92400)Tampa Bay Water and South Florida Water Management District (TBW and SFWMD) Project
文摘Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table rises in soils, which are significantly faster and higher than those in soils without air entrapment. Two numerical models, Integrated Hydrologic Model (IHM) and HYDRUS-1D (a single-phase, one-dimensional Richards′ equation model) were tested at an area of west central Florida to help further understanding the shallow water table behavior during a long term air entrapment. This investigation employed field data with two modeling approaches to quantify the variation of air pressurization values. It was found that the air pressurization effect was responsible at time up to 40 cm of water table rise being recorded by the observation well for these two models. The values of air pressurization calculated from IHM and HYDRUS-1D match the previously published values. Results also indicated that the two numerical models did not consider air entrapment effect (as the predictive parameters remain uncertain) and thus results of depth to water table from these models did not compare to the observations for these selected periods. Incorporating air entrapment in prediction models is critical to reproduce shallow water table observations.
文摘The potability of water wells, drilling and tap water is the determining factor for the quality management of health of the urban and rural population. This study has been done on the basis of monitoring aspect such as pH, content ammonium, nitrate, nitrite and chloride from a physico chemical point of view. This study allowed the chemical and bacteriological analysis of samples, based on the result obtained, and the potability of water was defined. The bacteriological analysis was carried out taking account of the total flora, coliforms and Escherichia coll. This work gave rise to analyze 36 samples of water from wells, eight samples of drilling water and nine samples of water taps from municipalities such as Mamou, Dalaba and Pita. Water wells represent 90% of water supplies in drinking water to the population. In this research, collection of samples was very important. This study shows that 16 samples from 52 are potable, therefore, it is urgent to focus on the treatment of sewage in order to ensure better health for the population from administrative region of Mamou.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072 and 60604009)the National Basic Research Program of China("973"Project)(Grant No.2013CB035503)+1 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)the Aeronautical Foundation of China(Grant No.20115151019)
文摘A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.