Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau(QTP). Different permafrost mo...Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau(QTP). Different permafrost models have been developed to simulate the ground temperature and active layer thickness(ALT). In this study, Temperature at Top of Permafrost(TTOP) model, Kudryavtsev model and modified Stefan solution were evaluated against detailed field measurements at four distinct field sites in the Wudaoliang Basin to better understand the applicability of permafrost models. Field data from 2012 to 2014 showed that there were notable differences in observed ground temperatures and ALTs within and among the sites. The TTOP model is relatively simple, however, when driven by averaged input values, it produced more accurate permafrost surface temperature(Tps) than the Kudryavtsev model. The modified Stefan solution resulted in a satisfactory accuracy of 90%, which was better than the Kudryavtsev model for estimating ALTs. The modified Stefan solution had the potential of being applied to climate-change studies in the future. Furthermore, additional field investigations over longer periods focusing on hydrology, which has significant influence on permafrost thaw, are necessary. These efforts should employ advanced measurement techniques to obtain adequate and extensive local parameters that will help improve model accuracy.展开更多
Y99-61805-82 0000722数据压缩与数据库(1)(含3篇文章)=Data compres-sion and data bases(1)[会,英]//1998 IEEE Oceans,Vol.1.—82~97(PC)本部分收录3篇论文。题名为:地中海盆地的温度与盐度历史数据集客观分析,通过数据采集、实时...Y99-61805-82 0000722数据压缩与数据库(1)(含3篇文章)=Data compres-sion and data bases(1)[会,英]//1998 IEEE Oceans,Vol.1.—82~97(PC)本部分收录3篇论文。题名为:地中海盆地的温度与盐度历史数据集客观分析,通过数据采集、实时处理和信息传递而支援气象与海洋学计算(nowcasting),以及西班牙研究船舶用的以太本地网络(LAN)的海洋数据采集系统(ODAS)。展开更多
The crustal structure of the northwestern sub-basin area of the South China Sea was modeled by inverting a wide-angle seismic survey line across the entire region and on both sides of its bounding continental margins....The crustal structure of the northwestern sub-basin area of the South China Sea was modeled by inverting a wide-angle seismic survey line across the entire region and on both sides of its bounding continental margins. The survey line extended over 484 km. A total of 14 Ocean Bottom Seismometers (OBS) were deployed at intervals of 30 km to record air-gun array sources with a combined volume of 5160 in 3 . The crustal velocity structure of the northwestern sub-basin area was acquired through the integration of multi-channel seismic data. OBS data were processed and modeled initially using ray tracing inversion techniques. Results indicate that crustal thickness under the continental slope decreases from 21 to 11 km, crustal thickness of the northwestern sub-basin is 7.7 km, and the depth to the Moho ascends from 21 km under the upper continental slope to 11 km under the middle basin. The crust of the northwestern sub-basin is similar to that of the eastern sub-basin in its oceanic crustal structure. This structure has a thicker layer 1 (sedimentary layer) and a thinner layer 2. These characteristics are especially clear in the eastern sub-basin, which differs somewhat from typical oceanic crust. The tectonic geometry and velocity structure of the northwestern sub-basin and its margins comprise a symmetrical conjugate and indicate a pure shear mode with regard to the continental margin rifting mechanism. We did not find clear seismic signals from high velocity layers under the lower crust of the continental margin in the northern part of the northwestern sub-basin, which provides new evidence for the idea that the western part of the northern continental margin of the South China Sea constitutes nonvolcanic crust. Because the seafloor spreading period of the northwestern sub-basin was short, layer 2 might have experienced asymmetrical basalt magma flows, which may have blurred the magnetic anomaly lineations of the northwestern sub-basin.展开更多
Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin ba...Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin basement in the northern South China Sea is divided into four structural layers,namely,Pre-Sinian crystalline basement,Sinian-lower Paleozoic,upper Paleozoic,and Mesozoic structural layers.This paper discusses the distribution range and law and reveals the tectonic attribute of each structural layer.The Pre-Sinian crystalline basement is distributed in the northern South China Sea,which is linked to the Pre-Sinian crystalline basement of the Cathaysian Block and together they constitute a larger-scale continental block—the Cathaysian-northern South China Sea continental block.The Sinian-lower Paleozoic structural layer is distributed in the northern South China Sea,which is the natural extension of the Caledonian fold belt in South China to the sea area.The sediments are derived from southern East China Sea-Taiwan,Zhongsha-Xisha islands and Yunkai ancient uplifts,and some small basement uplifts.The Caledonian fold belt in the northern South China Sea is linked with that in South China and they constitute the wider fold belt.The upper Paleozoic structural layer is unevenly distributed in the northern South China.In the basement of Beibu Gulf Basin and southwestern Taiwan Basin,the structural layer is composed of the stable epicontinental sea deposit.The distribution areas in the Pearl River Mouth Basin and the southeastern Hainan Basin belong to ancient uplifts in the late Paleozoic,lacking the upper Paleozoic structural layers.The stratigraphic distribution and sedimentary environment in Middle-Late Jurassic to Cretaceous are characteristic of differentiation in the east and the west.The marine,paralic deposit is well developed in the basin basement of southwestern Taiwan but the volcanic activity is not obvious.The marine and paralic facies deposit is distributed in the eastern Pearl River Mouth Basin basement and the volcanic activity is stronger.The continental facies volcano-sediment in the Early Cretaceous is distributed in the basement of the western Pearl River Mouth Basin and Southeastern Hainan Basin.The Upper Cretaceous red continental facies clastic rocks are distributed in the Beibu Gulf Basin and Yinggehai Basin.The NE direction granitic volcanic-intrusive complex,volcano-sedimentary basin,fold and fault in Mesozoic basement have the similar temporal and spatial distribution,geological feature,and tectonic attribute with the coastal land in South China,and they belong to the same magma-deposition-tectonic system,which demonstrates that the late Mesozoic structural layer was formed in the background of active continental margin.Based on the analysis of basement structure and the study on tectonic attribute,the paleogeographic map of the basin basement in different periods in the northern South China Sea is compiled.展开更多
基金funded by the State Key Development Program of Basic Research of China(973 Plan,Grant No.2012CB026101)the National Science and Technology Support Plan(Grant Nos.2014BAG05B01,2014BAG05B05)
文摘Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau(QTP). Different permafrost models have been developed to simulate the ground temperature and active layer thickness(ALT). In this study, Temperature at Top of Permafrost(TTOP) model, Kudryavtsev model and modified Stefan solution were evaluated against detailed field measurements at four distinct field sites in the Wudaoliang Basin to better understand the applicability of permafrost models. Field data from 2012 to 2014 showed that there were notable differences in observed ground temperatures and ALTs within and among the sites. The TTOP model is relatively simple, however, when driven by averaged input values, it produced more accurate permafrost surface temperature(Tps) than the Kudryavtsev model. The modified Stefan solution resulted in a satisfactory accuracy of 90%, which was better than the Kudryavtsev model for estimating ALTs. The modified Stefan solution had the potential of being applied to climate-change studies in the future. Furthermore, additional field investigations over longer periods focusing on hydrology, which has significant influence on permafrost thaw, are necessary. These efforts should employ advanced measurement techniques to obtain adequate and extensive local parameters that will help improve model accuracy.
文摘Y99-61805-82 0000722数据压缩与数据库(1)(含3篇文章)=Data compres-sion and data bases(1)[会,英]//1998 IEEE Oceans,Vol.1.—82~97(PC)本部分收录3篇论文。题名为:地中海盆地的温度与盐度历史数据集客观分析,通过数据采集、实时处理和信息传递而支援气象与海洋学计算(nowcasting),以及西班牙研究船舶用的以太本地网络(LAN)的海洋数据采集系统(ODAS)。
基金supported by National Basic Research Program of China (Grant No. 2007CB411701)National Natural Science Foundation of China (Grant Nos. 40876035 and 91028006)Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration (Grant No. JG200803)
文摘The crustal structure of the northwestern sub-basin area of the South China Sea was modeled by inverting a wide-angle seismic survey line across the entire region and on both sides of its bounding continental margins. The survey line extended over 484 km. A total of 14 Ocean Bottom Seismometers (OBS) were deployed at intervals of 30 km to record air-gun array sources with a combined volume of 5160 in 3 . The crustal velocity structure of the northwestern sub-basin area was acquired through the integration of multi-channel seismic data. OBS data were processed and modeled initially using ray tracing inversion techniques. Results indicate that crustal thickness under the continental slope decreases from 21 to 11 km, crustal thickness of the northwestern sub-basin is 7.7 km, and the depth to the Moho ascends from 21 km under the upper continental slope to 11 km under the middle basin. The crust of the northwestern sub-basin is similar to that of the eastern sub-basin in its oceanic crustal structure. This structure has a thicker layer 1 (sedimentary layer) and a thinner layer 2. These characteristics are especially clear in the eastern sub-basin, which differs somewhat from typical oceanic crust. The tectonic geometry and velocity structure of the northwestern sub-basin and its margins comprise a symmetrical conjugate and indicate a pure shear mode with regard to the continental margin rifting mechanism. We did not find clear seismic signals from high velocity layers under the lower crust of the continental margin in the northern part of the northwestern sub-basin, which provides new evidence for the idea that the western part of the northern continental margin of the South China Sea constitutes nonvolcanic crust. Because the seafloor spreading period of the northwestern sub-basin was short, layer 2 might have experienced asymmetrical basalt magma flows, which may have blurred the magnetic anomaly lineations of the northwestern sub-basin.
基金supported National Science and Technology Major Project(Grant No.2011ZX05025)National Basic Research Program of China(Grant No 2009CB219305)
文摘Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin basement in the northern South China Sea is divided into four structural layers,namely,Pre-Sinian crystalline basement,Sinian-lower Paleozoic,upper Paleozoic,and Mesozoic structural layers.This paper discusses the distribution range and law and reveals the tectonic attribute of each structural layer.The Pre-Sinian crystalline basement is distributed in the northern South China Sea,which is linked to the Pre-Sinian crystalline basement of the Cathaysian Block and together they constitute a larger-scale continental block—the Cathaysian-northern South China Sea continental block.The Sinian-lower Paleozoic structural layer is distributed in the northern South China Sea,which is the natural extension of the Caledonian fold belt in South China to the sea area.The sediments are derived from southern East China Sea-Taiwan,Zhongsha-Xisha islands and Yunkai ancient uplifts,and some small basement uplifts.The Caledonian fold belt in the northern South China Sea is linked with that in South China and they constitute the wider fold belt.The upper Paleozoic structural layer is unevenly distributed in the northern South China.In the basement of Beibu Gulf Basin and southwestern Taiwan Basin,the structural layer is composed of the stable epicontinental sea deposit.The distribution areas in the Pearl River Mouth Basin and the southeastern Hainan Basin belong to ancient uplifts in the late Paleozoic,lacking the upper Paleozoic structural layers.The stratigraphic distribution and sedimentary environment in Middle-Late Jurassic to Cretaceous are characteristic of differentiation in the east and the west.The marine,paralic deposit is well developed in the basin basement of southwestern Taiwan but the volcanic activity is not obvious.The marine and paralic facies deposit is distributed in the eastern Pearl River Mouth Basin basement and the volcanic activity is stronger.The continental facies volcano-sediment in the Early Cretaceous is distributed in the basement of the western Pearl River Mouth Basin and Southeastern Hainan Basin.The Upper Cretaceous red continental facies clastic rocks are distributed in the Beibu Gulf Basin and Yinggehai Basin.The NE direction granitic volcanic-intrusive complex,volcano-sedimentary basin,fold and fault in Mesozoic basement have the similar temporal and spatial distribution,geological feature,and tectonic attribute with the coastal land in South China,and they belong to the same magma-deposition-tectonic system,which demonstrates that the late Mesozoic structural layer was formed in the background of active continental margin.Based on the analysis of basement structure and the study on tectonic attribute,the paleogeographic map of the basin basement in different periods in the northern South China Sea is compiled.