Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In add...Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In addition, the area features marked active block movement. Therefore, Yunnan is a perfect place for research on strong earthquake activity. Through the study on the temporal and spatial distribution of the M ≥ 6.7 earthquakes and the related earthquake dynamics in Yunnan in the last century, we conclude that the four seismically active periods, which are characterized by alternative activity in the east and the west part of Yunnan, possibly result from a combination of active and quiescent periods in each of the east and west part. And for every 100 years, there may be a period in which strong earthquakes occur in the east and west parts simultaneously. In addition, the seismicity of strong earthquakes in Yunnan corresponds well to that in the peripheral region. The seismicity of the great earthquakes in the Andaman-Myanmar Tectonic Arc belt indicates, to some extent, the beginning of a seismically active period in Yunnan. The seismicity of strong earthquakes in east Yunnan is closely related to that in Sichuan. Strong earthquakes in Sichuan often occur later than those in Yunnan. Furthermore, in the east part of Ynnnan, the three procedures including continuous occurrence of moderate-strong earthquake, quiescent period, and the occurrence of the first strong earthquake may be the style of the beginning of the earthquake active period. The above cognition is helpful to the study of earthquake prediction, seismogenic mechanism, and the dynamics of the plate margin in Yunnan.展开更多
The Lajishan Mountain fault zone consists of two NE_protruding arcuate faults, i.e. the northern and southern margin fault of Lajishan Mountain with the fault length of 230km and 220km respectively. The fault zone is ...The Lajishan Mountain fault zone consists of two NE_protruding arcuate faults, i.e. the northern and southern margin fault of Lajishan Mountain with the fault length of 230km and 220km respectively. The fault zone is located in the large_scale compressional structure zone and tectonic gradient zone in_between the NNW_trending right_lateral strike_slip Reshui_Riyueshan fault zone and the NWW_trending left_lateral strike_slip northern margin of west Qinling Ranges fault zone is also an important boundary fault zone, separating the Xining_Minhe basin and the Xunhua_Hualong basin at the southern and northern sides of the Lajishan Mountain respectively. Geologic geomorphic evidences of new activity revealed by field investigations indicate that the latest movement of the Lajishan fault zone was in late Epipleistocene (only a few segments were active in early Holocene) and is mainly of compressive thrusting with slightly left_lateral strike_slip component. The above movement has possibly resulted in the occurrence of about 20 moderate earthquakes of magnitude around 5.0. The Lajishan region can therefore be regarded as a seismotectonic window to reflect tectonic movement and earthquake activity.展开更多
Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide h...Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.展开更多
The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and...The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation. The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall(M-K) test, and also investigated the related affecting factors, both from climate and human activities. The results revealed that the highest flood stages, duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49, 1.60 and 1.50, respectively. And, a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades. The rainfall during the flood season and subsequent discharges of the Changjiang(Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990 s. In addition, the intensive human activities, including land reclamation and levee construction, also played a supplementary role in increasing severity of major floods. While, the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods, but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.展开更多
The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (inclu...The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wave-crest belts. “Fast-waves" propagated with velocities of orders of magnitude of 100~102km/a have been verified by wave-controlled earthquake migration, showing the “decade waves" and “century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the belt-like distribution of strong earthquakes with M S≥7.0, it is indicated further in this paper that the “slow-waves" with velocities of orders of magnitude of 100~101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with M S≥7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accumulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16~0.55 Ma. The wave-generating time at the Himalayan driving boundary is about 1.34~4.59 Ma before present for the “slow-waves", corresponding to the stage from the Mid Pliocene to the Mid Early-Pleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of the wave-controlled belts of strong earthquakes that two optimal patterns of wave-crest belts originated simultaneously from the eastern and western segments of the Himalayan arc, respectively. The overlap of wave-crest belts of these two systems is responsible for the relative concentration of energy and forms the seismic-energy-background zones for strong earthquakes with M S≥7.0.展开更多
A new land cover classification system was established for the Three Gorges Reservoir Region(TGRR) after considering the continuity of inundation and the natural characteristics of land cover. The potential evapotrans...A new land cover classification system was established for the Three Gorges Reservoir Region(TGRR) after considering the continuity of inundation and the natural characteristics of land cover. The potential evapotranspiration(PET) was predicted using a modified Penman-Monteith(P-M) model. The region's ratio of precipitation to evapotranspiration was calculated as the humidity index(HI). The data obtained was used to analyze climatic responses to land cover conversions from the perspectives of evapotranspiration and humidity variations. The results show that, from 1997 to 2009, the average annual PET increased in the early years and decreased later. In terms of overall spatial distribution, a significant reciprocal relationship appeared between annual PET and annual HI. In 1997,the annual PET was higher in the lower reaches than in the upper reaches of the TGRR, but the areas with high PET shifted substantially westward by 2003. The annual PET continued to increase in 2006, but the areas with high PET shrank by 2009. In contrast, the annual HI showed varying degrees of localized spatial variability. Over the three periods, the dominantforms of land cover conversions occurred from evergreen cover to seasonal green cover, from seasonal green cover to evergreen cover, and from seasonal green cover to seasonally inundated areas, respectively. These accounted for 48.0%, 38.4%, and 23.8% of the total areas of converted land covers in the three periods, respectively. During the period between 1997 and 2003, the main forms of land cover conversions resulted in both positive and negative growths in the average annual PET, while all of them pushed down the average annual HI. From 2003 to 2006, the reservoir region experienced neither a decrease in the annual PET nor an increase in the annual HI. The period between 2006 and 2009 saw a consistent downward trend in the annual PET and a consistent upward trend in the annual HI.展开更多
The tendency and dynamic characteristics of horizontal movement along the Shanxi fault zone have been analyzed using the data obtained from 6 repeated measurements (1996~2001) in the GPS monitoring network arranged a...The tendency and dynamic characteristics of horizontal movement along the Shanxi fault zone have been analyzed using the data obtained from 6 repeated measurements (1996~2001) in the GPS monitoring network arranged along the Shanxi fault zone. The results indicate: (1) the tendentious activity of the present stage is characterized by a W trending movement along the northern segment of the zone, an E trending movement along the southern segment and counter clockwise differential activity on the whole, but the intensity of the tendentious activity is not high. The tendentious differential movement is only about 3 mm/a in the direction perpendicular to the fault zone from the south to the north, and its stretch in the SN direction is only 1 mm/a and mainly occurs along the north segment of the fault; (2) The azimuth of the principal compressive stress field reflected by the tendentious movement is 72°; (3) The property of annual activity is not the same, even contrary to one another or deviates from the tendentious activity. Therefore, the parameters of the strain field derived from them dont reflect the physical characteristics of the basic stress field. (4) The high frequency movement (yearly) does not only exist but is also complicated by an intensity several times higher than that of the tendentious movement; (5) Obvious differential movements, including strike slip, can not be seen in either in secular activity or annual activity on both sides of any fault. The tendentious movement not only verifies the conjecture of “strong in the south and weak in north”, which is the basic feature forcing the western boundary of the North China area, but it also extends to the hinterland of North China. The fact that there is no obvious differential activity on both sides of the fault might indicate that the differential activity among the intraplate blocks is completed by gradual variation in a certain space, rather than the abrupt change bordered by a fault or narrow stripe zone. The obvious dynamic activity might indicate: (1) there is stress disturbance in the basic stress field; (2) the inhomogeneous or non synchronous variation that appeared in the regional stress and strain fields was due to the different physical property of the medium; (3)the response occurred because of a variety of external variations. The movement in 2001 shows that the Daixian county and its adjacent area might be the boundary segment for the relative differential activity. More attention should be paid here.展开更多
The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced an...The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced and normal times, the spatial distribution characteristics of the increased seismic frequency, the temporal-spatial distribution and types of seismic swarms. Seismic frequency increased at 71.3% of the statistical sites in the Yunnan area. The maximal increase ratio is 18.2.展开更多
Seismic gap method is one of the effective earthquake prediction methods using seismicity patterns. However, this method has some limitations and uncertainty when using it singly in predicting earthquakes. This paper ...Seismic gap method is one of the effective earthquake prediction methods using seismicity patterns. However, this method has some limitations and uncertainty when using it singly in predicting earthquakes. This paper puts forward the prediction method using the dynamic seismicity pattern with dynamic implications. This method considers the formation and evolution of the seismic gap on the basis of plate movement and structural characteristics. Through analysis of 26 cases of earthquakes of MS≥5.0 occurring in East China and South China, this paper obtains the relationship between the main shock with seismic gap and active fault's location, as well as the relationship between the seismic gap and location and strike of active faults. Meanwhile, this paper provides a dynamic explanation of the differences in the formation and evolution patterns of the seismic gap between the two regions, thus providing the physical basis for and reducing the uncertainty of predicting earthquakes using the seismic gap method.展开更多
The historical earthquake activity is intense in the North China region. However, no middle-sized earthquakes have occurred in the last decades in the region since the Ms6.2 earthquake in the Zhangbei region in 1998. ...The historical earthquake activity is intense in the North China region. However, no middle-sized earthquakes have occurred in the last decades in the region since the Ms6.2 earthquake in the Zhangbei region in 1998. The quiescence of moderate and strong earthquakes is quite prominent in North China. In this paper, we use small earthquake records in 1970 ~ 2009 to study background seismic activity in the North China region. The spatial distributions of seismic parameters are presented, including b-value, the maximum magnitude and annual occurrence probability of earthquakes of M/〉6. 0. Our results show regions with low b-value that include the Yuncheng region in the Shanxi rift, the Suqian region located in the Tancheng-Lujiang fault zone and the Shijiazhuang region in the Taihangshan block. Our analysis on the synthetic spatial pattern of seismicity indicate that seismicity in the North China region is mainly affected by the regional dynamic factors of deep structures.展开更多
OBJECTIVE: To determine differences in cerebral activity evoked by acupuncture and conventional stroke treatment, and identify the treatment targets.METHODS: In total, 21 patients were randomly divided into two groups...OBJECTIVE: To determine differences in cerebral activity evoked by acupuncture and conventional stroke treatment, and identify the treatment targets.METHODS: In total, 21 patients were randomly divided into two groups. Group A(11 patients) received both acupuncture and conventional treatment, while group B(10 patients) received conventional treatment only. Resting-state functional magnetic resonance imaging(f MRI) was performed on each participant before and after treatment. Regional homogeneity analysis was performed to investigate the potential mechanism of acupuncture treatment by comparing differences in cerebral activity between treatments.RESULTS: Group A showed higher Re Ho in the frontal lobe(BA6, BA46), supra-marginal gyrus(BA40),middle temporal gyrus(BA21), cerebellum, and insula. Group B showed higher Re Ho in the frontal lobe(BA6) and parietal lobe(BA3, BA7).CONCLUSION: Acupuncture and conventional treatment triggered relatively different clinical efficacy and brain responses. Acupuncture treatment more significantly improved the symptoms of stroke patients. More marked changes in sensory,emotional, and motor areas(including the frontal lobe, middle temporal gyrus, cerebellum, and insula) might reflect the specific acupuncture mechanism.展开更多
The statistical characteristics of the subauroral ion drift (SAID) in the ionosphere and the plasmaspheric trough evolution under different conditions of SAID were investigated in this paper, based on 566 SAID events ...The statistical characteristics of the subauroral ion drift (SAID) in the ionosphere and the plasmaspheric trough evolution under different conditions of SAID were investigated in this paper, based on 566 SAID events observed by Akebono, Astrid-2, DE-2, and Freja satellites. The relationships between the latitudinal location of SAID and the Kp, AL, and Dst indices for these events were also discussed. It was found that the SAID events happened mainly at invariant latitude (ILAT) of 60.4° and magnetic local time (MLT) of 21.6 MLT and that 92.4% of the events happened when the Kp index was below 5.0, indicating a medium geomagnetic activity. The latitudinal half-width of SAID varied from 0.5° to 3.0° with a typical half-width of 1.0°. The SAID would happen at low latitudes if the geomagnetic activity was high. The effects of SAID on equatorial outer plas- masphere trough evolutions were studied with the dynamic global core plasma model (DGCPM) driven by the statistical results of SAID signatures. It was noted that locations, shapes and density of troughs vary with ILAT, MLT, latitudinal width, cross polar cap potential and lifetime of SAID events. The evolution of a trough is determined by the extent of SAID electric field penetrating into plasmasphere and not all SAID events can result in trough formations.展开更多
Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occu...Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occurred during the water storage stages, in which the largest was the Badong M5.1 earthquake on December 16, 2013. In this paper, the relationships between seismic activities, b value, seismic parameters, and reservoir water level fluctuations are studied. In addition, based on the digital seismic waveform data obtained since 2000, the focal depth changes and focal mechanism characteristics before and after the water impoundment are studied as well. These provide us important information to understand the earthquake mechanisms. The results show that these earthquakes are typical reservoir-induced earthquakes, which are closely related to water infiltration, pore pressure, and water level fluctuations.The majority of the micro and small earthquakes are caused by karst collapse, mine collapse, bank reformation, superficial unloading, and so on. The larger earthquakes are related to the fault structures to some extent. Due to the persistent effects of water impoundment on the seismic and geological environments around the reservoir and water infiltration into the rocks, the influences on the crustal deformation field, gravity field, seepage field, and fault medium-softening action may vary gradually from a higher strength to a weaker one. Therefore, it is possible that small earthquakes and few medium earthquakes(M≤5.5) will occur in the reservoir area in the future.展开更多
基金This project was supported bythefundamental researchfunds ofYunnan Province
文摘Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In addition, the area features marked active block movement. Therefore, Yunnan is a perfect place for research on strong earthquake activity. Through the study on the temporal and spatial distribution of the M ≥ 6.7 earthquakes and the related earthquake dynamics in Yunnan in the last century, we conclude that the four seismically active periods, which are characterized by alternative activity in the east and the west part of Yunnan, possibly result from a combination of active and quiescent periods in each of the east and west part. And for every 100 years, there may be a period in which strong earthquakes occur in the east and west parts simultaneously. In addition, the seismicity of strong earthquakes in Yunnan corresponds well to that in the peripheral region. The seismicity of the great earthquakes in the Andaman-Myanmar Tectonic Arc belt indicates, to some extent, the beginning of a seismically active period in Yunnan. The seismicity of strong earthquakes in east Yunnan is closely related to that in Sichuan. Strong earthquakes in Sichuan often occur later than those in Yunnan. Furthermore, in the east part of Ynnnan, the three procedures including continuous occurrence of moderate-strong earthquake, quiescent period, and the occurrence of the first strong earthquake may be the style of the beginning of the earthquake active period. The above cognition is helpful to the study of earthquake prediction, seismogenic mechanism, and the dynamics of the plate margin in Yunnan.
文摘The Lajishan Mountain fault zone consists of two NE_protruding arcuate faults, i.e. the northern and southern margin fault of Lajishan Mountain with the fault length of 230km and 220km respectively. The fault zone is located in the large_scale compressional structure zone and tectonic gradient zone in_between the NNW_trending right_lateral strike_slip Reshui_Riyueshan fault zone and the NWW_trending left_lateral strike_slip northern margin of west Qinling Ranges fault zone is also an important boundary fault zone, separating the Xining_Minhe basin and the Xunhua_Hualong basin at the southern and northern sides of the Lajishan Mountain respectively. Geologic geomorphic evidences of new activity revealed by field investigations indicate that the latest movement of the Lajishan fault zone was in late Epipleistocene (only a few segments were active in early Holocene) and is mainly of compressive thrusting with slightly left_lateral strike_slip component. The above movement has possibly resulted in the occurrence of about 20 moderate earthquakes of magnitude around 5.0. The Lajishan region can therefore be regarded as a seismotectonic window to reflect tectonic movement and earthquake activity.
基金supported by the 973 Program of China (Grant No.2008CB425802)the International Cooperation Program of the Ministry of Science and Technology of China (Grant No.2007DFA21150 and 2009DFB20196)
文摘Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.
基金Under the auspices of National Basic Research Program of China(No.2012CB417003)National Natural Science Foundation of China(No.41101024)
文摘The Poyang Lake is one of the most frequently flooded areas in China. Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation. The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall(M-K) test, and also investigated the related affecting factors, both from climate and human activities. The results revealed that the highest flood stages, duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49, 1.60 and 1.50, respectively. And, a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades. The rainfall during the flood season and subsequent discharges of the Changjiang(Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990 s. In addition, the intensive human activities, including land reclamation and levee construction, also played a supplementary role in increasing severity of major floods. While, the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods, but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.
文摘The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wave-crest belts. “Fast-waves" propagated with velocities of orders of magnitude of 100~102km/a have been verified by wave-controlled earthquake migration, showing the “decade waves" and “century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the belt-like distribution of strong earthquakes with M S≥7.0, it is indicated further in this paper that the “slow-waves" with velocities of orders of magnitude of 100~101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with M S≥7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accumulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16~0.55 Ma. The wave-generating time at the Himalayan driving boundary is about 1.34~4.59 Ma before present for the “slow-waves", corresponding to the stage from the Mid Pliocene to the Mid Early-Pleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of the wave-controlled belts of strong earthquakes that two optimal patterns of wave-crest belts originated simultaneously from the eastern and western segments of the Himalayan arc, respectively. The overlap of wave-crest belts of these two systems is responsible for the relative concentration of energy and forms the seismic-energy-background zones for strong earthquakes with M S≥7.0.
基金partially supported and funded by Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyj B0317)Chongqing University Innovation Team Building Plan (Grant No. CXTDX201601017)Science and Technology Project of Chongqing Municipal Education Commission (Grant No. KJ1738462)
文摘A new land cover classification system was established for the Three Gorges Reservoir Region(TGRR) after considering the continuity of inundation and the natural characteristics of land cover. The potential evapotranspiration(PET) was predicted using a modified Penman-Monteith(P-M) model. The region's ratio of precipitation to evapotranspiration was calculated as the humidity index(HI). The data obtained was used to analyze climatic responses to land cover conversions from the perspectives of evapotranspiration and humidity variations. The results show that, from 1997 to 2009, the average annual PET increased in the early years and decreased later. In terms of overall spatial distribution, a significant reciprocal relationship appeared between annual PET and annual HI. In 1997,the annual PET was higher in the lower reaches than in the upper reaches of the TGRR, but the areas with high PET shifted substantially westward by 2003. The annual PET continued to increase in 2006, but the areas with high PET shrank by 2009. In contrast, the annual HI showed varying degrees of localized spatial variability. Over the three periods, the dominantforms of land cover conversions occurred from evergreen cover to seasonal green cover, from seasonal green cover to evergreen cover, and from seasonal green cover to seasonally inundated areas, respectively. These accounted for 48.0%, 38.4%, and 23.8% of the total areas of converted land covers in the three periods, respectively. During the period between 1997 and 2003, the main forms of land cover conversions resulted in both positive and negative growths in the average annual PET, while all of them pushed down the average annual HI. From 2003 to 2006, the reservoir region experienced neither a decrease in the annual PET nor an increase in the annual HI. The period between 2006 and 2009 saw a consistent downward trend in the annual PET and a consistent upward trend in the annual HI.
文摘The tendency and dynamic characteristics of horizontal movement along the Shanxi fault zone have been analyzed using the data obtained from 6 repeated measurements (1996~2001) in the GPS monitoring network arranged along the Shanxi fault zone. The results indicate: (1) the tendentious activity of the present stage is characterized by a W trending movement along the northern segment of the zone, an E trending movement along the southern segment and counter clockwise differential activity on the whole, but the intensity of the tendentious activity is not high. The tendentious differential movement is only about 3 mm/a in the direction perpendicular to the fault zone from the south to the north, and its stretch in the SN direction is only 1 mm/a and mainly occurs along the north segment of the fault; (2) The azimuth of the principal compressive stress field reflected by the tendentious movement is 72°; (3) The property of annual activity is not the same, even contrary to one another or deviates from the tendentious activity. Therefore, the parameters of the strain field derived from them dont reflect the physical characteristics of the basic stress field. (4) The high frequency movement (yearly) does not only exist but is also complicated by an intensity several times higher than that of the tendentious movement; (5) Obvious differential movements, including strike slip, can not be seen in either in secular activity or annual activity on both sides of any fault. The tendentious movement not only verifies the conjecture of “strong in the south and weak in north”, which is the basic feature forcing the western boundary of the North China area, but it also extends to the hinterland of North China. The fact that there is no obvious differential activity on both sides of the fault might indicate that the differential activity among the intraplate blocks is completed by gradual variation in a certain space, rather than the abrupt change bordered by a fault or narrow stripe zone. The obvious dynamic activity might indicate: (1) there is stress disturbance in the basic stress field; (2) the inhomogeneous or non synchronous variation that appeared in the regional stress and strain fields was due to the different physical property of the medium; (3)the response occurred because of a variety of external variations. The movement in 2001 shows that the Daixian county and its adjacent area might be the boundary segment for the relative differential activity. More attention should be paid here.
文摘The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced and normal times, the spatial distribution characteristics of the increased seismic frequency, the temporal-spatial distribution and types of seismic swarms. Seismic frequency increased at 71.3% of the statistical sites in the Yunnan area. The maximal increase ratio is 18.2.
基金supported by the National Science and Technology Program of China Earthquake Administration (No. 2006BAC01B02-01-05)Anhui Provincial Science and Technique Foundation (No. 08010302204)Joint Earthquake Science Fundation (A08077)
文摘Seismic gap method is one of the effective earthquake prediction methods using seismicity patterns. However, this method has some limitations and uncertainty when using it singly in predicting earthquakes. This paper puts forward the prediction method using the dynamic seismicity pattern with dynamic implications. This method considers the formation and evolution of the seismic gap on the basis of plate movement and structural characteristics. Through analysis of 26 cases of earthquakes of MS≥5.0 occurring in East China and South China, this paper obtains the relationship between the main shock with seismic gap and active fault's location, as well as the relationship between the seismic gap and location and strike of active faults. Meanwhile, this paper provides a dynamic explanation of the differences in the formation and evolution patterns of the seismic gap between the two regions, thus providing the physical basis for and reducing the uncertainty of predicting earthquakes using the seismic gap method.
基金supported by the International Scienceand Technology Cooperation Program of China(2010DFB20190)the"Basic Science Research Plan"of the Institute of Earthquake Science,China Earthquake Administration(Grant No.02092431)
文摘The historical earthquake activity is intense in the North China region. However, no middle-sized earthquakes have occurred in the last decades in the region since the Ms6.2 earthquake in the Zhangbei region in 1998. The quiescence of moderate and strong earthquakes is quite prominent in North China. In this paper, we use small earthquake records in 1970 ~ 2009 to study background seismic activity in the North China region. The spatial distributions of seismic parameters are presented, including b-value, the maximum magnitude and annual occurrence probability of earthquakes of M/〉6. 0. Our results show regions with low b-value that include the Yuncheng region in the Shanxi rift, the Suqian region located in the Tancheng-Lujiang fault zone and the Shijiazhuang region in the Taihangshan block. Our analysis on the synthetic spatial pattern of seismicity indicate that seismicity in the North China region is mainly affected by the regional dynamic factors of deep structures.
基金Supported by the National Natural Science Foundation of China(NSFC):Acupoint Sensitization Research(No.81590950)the State Key Program for Basic Research of China:Clinical Evaluation of the Basic Rules of Acupoint Specification and Basic Biological Study on CNS Targeting Integration(No.2012CB518501)NSFC:Study on the CNS Integration Mechanism of Spine-dredging Technique in Treating Ischemia Stroke(No.81072864)
文摘OBJECTIVE: To determine differences in cerebral activity evoked by acupuncture and conventional stroke treatment, and identify the treatment targets.METHODS: In total, 21 patients were randomly divided into two groups. Group A(11 patients) received both acupuncture and conventional treatment, while group B(10 patients) received conventional treatment only. Resting-state functional magnetic resonance imaging(f MRI) was performed on each participant before and after treatment. Regional homogeneity analysis was performed to investigate the potential mechanism of acupuncture treatment by comparing differences in cerebral activity between treatments.RESULTS: Group A showed higher Re Ho in the frontal lobe(BA6, BA46), supra-marginal gyrus(BA40),middle temporal gyrus(BA21), cerebellum, and insula. Group B showed higher Re Ho in the frontal lobe(BA6) and parietal lobe(BA3, BA7).CONCLUSION: Acupuncture and conventional treatment triggered relatively different clinical efficacy and brain responses. Acupuncture treatment more significantly improved the symptoms of stroke patients. More marked changes in sensory,emotional, and motor areas(including the frontal lobe, middle temporal gyrus, cerebellum, and insula) might reflect the specific acupuncture mechanism.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40890160, 40804030, 10878004, and 40974093)the National Basic Research Program of China ("973" Program) (Grant No. 2011CB811400, 2012CB957800)+1 种基金the National Hi-Tech Research and Development Program of China ("863" Program) (Grant No. 2010AA-122205)the Special Fund for Public Welfare Industry (Grant Nos. GYHY200806024 and GYHY200906013)
文摘The statistical characteristics of the subauroral ion drift (SAID) in the ionosphere and the plasmaspheric trough evolution under different conditions of SAID were investigated in this paper, based on 566 SAID events observed by Akebono, Astrid-2, DE-2, and Freja satellites. The relationships between the latitudinal location of SAID and the Kp, AL, and Dst indices for these events were also discussed. It was found that the SAID events happened mainly at invariant latitude (ILAT) of 60.4° and magnetic local time (MLT) of 21.6 MLT and that 92.4% of the events happened when the Kp index was below 5.0, indicating a medium geomagnetic activity. The latitudinal half-width of SAID varied from 0.5° to 3.0° with a typical half-width of 1.0°. The SAID would happen at low latitudes if the geomagnetic activity was high. The effects of SAID on equatorial outer plas- masphere trough evolutions were studied with the dynamic global core plasma model (DGCPM) driven by the statistical results of SAID signatures. It was noted that locations, shapes and density of troughs vary with ILAT, MLT, latitudinal width, cross polar cap potential and lifetime of SAID events. The evolution of a trough is determined by the extent of SAID electric field penetrating into plasmasphere and not all SAID events can result in trough formations.
基金supported by the National Natural Science Foundation of China (41572354)the Key Foundation of the Institute of Seismology (IS201616254)
文摘Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occurred during the water storage stages, in which the largest was the Badong M5.1 earthquake on December 16, 2013. In this paper, the relationships between seismic activities, b value, seismic parameters, and reservoir water level fluctuations are studied. In addition, based on the digital seismic waveform data obtained since 2000, the focal depth changes and focal mechanism characteristics before and after the water impoundment are studied as well. These provide us important information to understand the earthquake mechanisms. The results show that these earthquakes are typical reservoir-induced earthquakes, which are closely related to water infiltration, pore pressure, and water level fluctuations.The majority of the micro and small earthquakes are caused by karst collapse, mine collapse, bank reformation, superficial unloading, and so on. The larger earthquakes are related to the fault structures to some extent. Due to the persistent effects of water impoundment on the seismic and geological environments around the reservoir and water infiltration into the rocks, the influences on the crustal deformation field, gravity field, seepage field, and fault medium-softening action may vary gradually from a higher strength to a weaker one. Therefore, it is possible that small earthquakes and few medium earthquakes(M≤5.5) will occur in the reservoir area in the future.