Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coeffici...Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coefficient (K0) of thick and deep soil was analyzed using laboratory tests. The results show that the static earth pressure coefficient of thick and deep soils is nonlinear and different from that of superficial soils. The constant of superficial soils is usually invariant and the total stress or incremental stress definitions used in traditional geo-meehanics give the same value. The influence of load increments when calculating for superficial soil is ignored. The difference in values of K0 for thick alluvium defimed by the total stress or the incremental stress methods is over 10%. The effects of the thick alluvium on K0 should be considered during the design of frozen shaft projects. Such things as the frozen shaft thickness and the excavated section height should be chosen to assure the rationality of the design and to avoid potential faults and accidents.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical dr...The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.展开更多
There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive h...There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive has only effects on single trait, so it is difficult to meet cementing requirement. According to this situation we could use latex slurry to anti-gas channeling. We have synthesised a set of anti-gas channeling lightweight temperature-resistant latex slurry and formed a new channeling preventing latex slurry through plenty of previous laboratory experiments. Finally the performance of latex slurry on temperature-resistant, anti-gas channeling and the anti-gas channeling of cement paste are studied. The experimental results show that this latex system has strong temperature-resistant and anti-gas channeling, which completely meet the requirement of cementing in this area.展开更多
Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal...Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.展开更多
Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough rese...Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough research.The M s 6.1 earthquake in the Xinfengjiang Reservoir in 1962 is well acknowledged as the largest reservoir-induced earthquake in China.Therefore, it is a logical site for quantitative calculation of ΔCFS induced by the filling of the reservoir and for investigating the magnitude of CFS that can trigger reservoir seismic activities.To better understand the RIS mechanism, a three-dimensional poroelastic finite element model of the Xinfengjiang Reservoir is proposed here, taking into consideration of the precise topography and dynamic water level.We calculate the instant changes of stress and pore pressure induced by water load, and the time variation of effective stresses due to pore water diffusion.The CFS on the seismogenesis faults and the accumulation of strain energy in the reservoir region are also calculated.Primary results suggest that the reservoir impoundment increases both pore pressure and CFS on the fault at the focal depth.The diffusion of pore pressure was likely the main factor that triggered the main earthquake, whereas the elastic stress owing to water load was relatively small.The magnitude of CFS on seismogenesis fault can reach approximately 10 kPa, and the ΔCFS values at the hypocenter can be about 0.7-3.0 kPa, depending on the fault diffusion coefficient.The calculated maximum vertical subsidence caused by the water load in the Xinfengjiang Reservoir is 17.5 mm, which is in good agreement with the observed value of 15 mm.The accumulated strain energy owing to water load was only about 7.3×10 11 J, even less than 1% of the seismic wave energy released by the earthquake.The reservoir impoundment was the only factor that triggered the earthquake.展开更多
Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,...Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.展开更多
基金Project BK2007040 supported by the Provincial Natural Science Foundation of Jiangsu, China
文摘Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coefficient (K0) of thick and deep soil was analyzed using laboratory tests. The results show that the static earth pressure coefficient of thick and deep soils is nonlinear and different from that of superficial soils. The constant of superficial soils is usually invariant and the total stress or incremental stress definitions used in traditional geo-meehanics give the same value. The influence of load increments when calculating for superficial soil is ignored. The difference in values of K0 for thick alluvium defimed by the total stress or the incremental stress methods is over 10%. The effects of the thick alluvium on K0 should be considered during the design of frozen shaft projects. Such things as the frozen shaft thickness and the excavated section height should be chosen to assure the rationality of the design and to avoid potential faults and accidents.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金Project(2010THZ021)supported by Tsinghua University,ChinaProject(50978139)supported by the National Natural Science Foundation of ChinaProject(2012CB719804)supported by the National Basic Research Program of China
文摘The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.
文摘There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive has only effects on single trait, so it is difficult to meet cementing requirement. According to this situation we could use latex slurry to anti-gas channeling. We have synthesised a set of anti-gas channeling lightweight temperature-resistant latex slurry and formed a new channeling preventing latex slurry through plenty of previous laboratory experiments. Finally the performance of latex slurry on temperature-resistant, anti-gas channeling and the anti-gas channeling of cement paste are studied. The experimental results show that this latex system has strong temperature-resistant and anti-gas channeling, which completely meet the requirement of cementing in this area.
基金The research was jointly supported by National NatureScience Foundation of China (40374019)the research subject entitled"Research on the Digital Data Analysis and Application of Underground Fluid" under the 11th Five-Year Program of China Earthquake Administration(2006BAC01B02-03-02)
文摘Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.
基金supported by Key Laboratory of Earthquake DynamicsSinoProbe-07 Project of the Ministry of Land and Resources+1 种基金National Basic Research Program of China(Grant No.2008CB425701)National High-tech R&D Program of China(Grant No.2010AA012402)
文摘Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough research.The M s 6.1 earthquake in the Xinfengjiang Reservoir in 1962 is well acknowledged as the largest reservoir-induced earthquake in China.Therefore, it is a logical site for quantitative calculation of ΔCFS induced by the filling of the reservoir and for investigating the magnitude of CFS that can trigger reservoir seismic activities.To better understand the RIS mechanism, a three-dimensional poroelastic finite element model of the Xinfengjiang Reservoir is proposed here, taking into consideration of the precise topography and dynamic water level.We calculate the instant changes of stress and pore pressure induced by water load, and the time variation of effective stresses due to pore water diffusion.The CFS on the seismogenesis faults and the accumulation of strain energy in the reservoir region are also calculated.Primary results suggest that the reservoir impoundment increases both pore pressure and CFS on the fault at the focal depth.The diffusion of pore pressure was likely the main factor that triggered the main earthquake, whereas the elastic stress owing to water load was relatively small.The magnitude of CFS on seismogenesis fault can reach approximately 10 kPa, and the ΔCFS values at the hypocenter can be about 0.7-3.0 kPa, depending on the fault diffusion coefficient.The calculated maximum vertical subsidence caused by the water load in the Xinfengjiang Reservoir is 17.5 mm, which is in good agreement with the observed value of 15 mm.The accumulated strain energy owing to water load was only about 7.3×10 11 J, even less than 1% of the seismic wave energy released by the earthquake.The reservoir impoundment was the only factor that triggered the earthquake.
基金supported by the National Natural Science Foundation of China(41922023,41830428,42173038,41973055,and 42130109)the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling(Nanjing University,China)the Fundamental Research Funds for the Central Universities,China(2022300192).
文摘Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.