Traditionally, it is widely accepted that measurement error usually obeys the normal distribution. However, in this paper a new idea is proposed that the error in digitized data which is a major derived data source in...Traditionally, it is widely accepted that measurement error usually obeys the normal distribution. However, in this paper a new idea is proposed that the error in digitized data which is a major derived data source in GIS does not obey the normal distribution but the p-norm distribution with a determinate parameter. Assuming that the error is random and has the same statistical properties, the probability density function of the normal distribution, Laplace distribution and p-norm distribution are derived based on the arithmetic mean axiom, median axiom and p-median axiom, which means that the normal distribution is only one of these distributions but not the least one. Based on this ideal distribution fitness tests such as Skewness and Kurtosis coefficient test, Pearson chi-square chi(2) test and Kolmogorov test for digitized data are conducted. The results show that the error in map digitization obeys the p-norm distribution whose parameter is close to 1.60. A least p-norm estimation and the least square estimation of digitized data are further analyzed, showing that the least p-norm adjustment is better than the least square adjustment for digitized data processing in GIS.展开更多
In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting fun...In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.展开更多
The paper discusses about anthropogenic pressure classification system on landscape oasises. As a result, based on designed criteria rates a thematic map titled "Anthropogenic pressure and its consequences on landsca...The paper discusses about anthropogenic pressure classification system on landscape oasises. As a result, based on designed criteria rates a thematic map titled "Anthropogenic pressure and its consequences on landscapes oasises of mid and lower part of Zarafshan River Basin" was developed. The thematic map depicts realthionship between ecological conditions and population diseases along various landscape oasises of the Zarafshan river valley.展开更多
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ...The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach.展开更多
Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from...Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.展开更多
A technically transparent and freely available reference sample set for validation of global land cover mapping was recently established to assess the accuracies of land cover maps with multiple resolutions.This sampl...A technically transparent and freely available reference sample set for validation of global land cover mapping was recently established to assess the accuracies of land cover maps with multiple resolutions.This sample set can be used to estimate areas because of its equal-area hexagon-based sampling design.The capabilities of these sample set-based area estimates for cropland were investigated in this paper.A 30-m cropland map for China was consolidated using three thematic maps(cropland,forest and wetland maps)to reduce confusion between cropland and forest/wetland.We compared three area estimation methods using the sample set and the 30 m cropland map.The methods investigated were:(1)pixel counting from a complete coverage map,(2)direct estimation from reference samples,and(3)model-assisted estimation combining the map with samples.Our results indicated that all three methods produced generally consistent estimates which agreed with cropland area measured from an independent national land use dataset.Areas estimated from the reference sample set were less biased by comparing with a National Land Use Dataset of China(NLUD-C).This study indicates that the reference sample set can be used as an alternative source to estimate areas over large regions.展开更多
文摘Traditionally, it is widely accepted that measurement error usually obeys the normal distribution. However, in this paper a new idea is proposed that the error in digitized data which is a major derived data source in GIS does not obey the normal distribution but the p-norm distribution with a determinate parameter. Assuming that the error is random and has the same statistical properties, the probability density function of the normal distribution, Laplace distribution and p-norm distribution are derived based on the arithmetic mean axiom, median axiom and p-median axiom, which means that the normal distribution is only one of these distributions but not the least one. Based on this ideal distribution fitness tests such as Skewness and Kurtosis coefficient test, Pearson chi-square chi(2) test and Kolmogorov test for digitized data are conducted. The results show that the error in map digitization obeys the p-norm distribution whose parameter is close to 1.60. A least p-norm estimation and the least square estimation of digitized data are further analyzed, showing that the least p-norm adjustment is better than the least square adjustment for digitized data processing in GIS.
基金supported by the National Research Foundation of Korea Grant funded by the Korea Ministry of Science and Technology under Grant No. 2012-0009228
文摘In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.
文摘The paper discusses about anthropogenic pressure classification system on landscape oasises. As a result, based on designed criteria rates a thematic map titled "Anthropogenic pressure and its consequences on landscapes oasises of mid and lower part of Zarafshan River Basin" was developed. The thematic map depicts realthionship between ecological conditions and population diseases along various landscape oasises of the Zarafshan river valley.
基金Project(ZR2011FM005)supported by the Natural Science Foundation of Shandong Province,China
文摘The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach.
基金supported by the National High-tech R&D Program of China(Grant No.2009AA12200101)the National Natural Science Foundation of China(Grant No.41301445)+1 种基金an Open Fund from the State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201202)a research grant from Tsinghua University(Grant No.2012Z02287)
文摘Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.
基金supported by the National Natural Science Foundation of China(Grant No.41301445)a research grant from Tsinghua University(Grant No.20151080351)
文摘A technically transparent and freely available reference sample set for validation of global land cover mapping was recently established to assess the accuracies of land cover maps with multiple resolutions.This sample set can be used to estimate areas because of its equal-area hexagon-based sampling design.The capabilities of these sample set-based area estimates for cropland were investigated in this paper.A 30-m cropland map for China was consolidated using three thematic maps(cropland,forest and wetland maps)to reduce confusion between cropland and forest/wetland.We compared three area estimation methods using the sample set and the 30 m cropland map.The methods investigated were:(1)pixel counting from a complete coverage map,(2)direct estimation from reference samples,and(3)model-assisted estimation combining the map with samples.Our results indicated that all three methods produced generally consistent estimates which agreed with cropland area measured from an independent national land use dataset.Areas estimated from the reference sample set were less biased by comparing with a National Land Use Dataset of China(NLUD-C).This study indicates that the reference sample set can be used as an alternative source to estimate areas over large regions.