in the latest version of the international Centre for Theoretical Physics' regional climate model, RegCM4, CLM was introduced as a new land surface scheme. The performance over China of RegCM4-CLM with different conv...in the latest version of the international Centre for Theoretical Physics' regional climate model, RegCM4, CLM was introduced as a new land surface scheme. The performance over China of RegCM4-CLM with different convection schemes is analyzed in this study, based on a series of short- term experiments.The model is driven by ERA-Interim data at a grid spacing of 25 km.The convection schemes employed are: Emanuel; Grell; Emanuel over land and Grell over ocean; Grell over land and Emanuel over ocean; and Tiedtke. The simulated mean surface air temperature and precipitation in December-February-January and June-July-August are compared against observation. In general, better performance of Emanuel is found both for temperature and precipitation, and in both seasons. Thus, the model physics of CLM and Emanuel for the land surface processes and convection, respectively, are recommended for further application of RegCM4 over the China region. The de^ciencies that remain in the model arealso outlined and discussed.展开更多
基金supported by the National Natural Science Foundation of China[41375104]the Climate Change Specific Fund of China[CCSF201509]
文摘in the latest version of the international Centre for Theoretical Physics' regional climate model, RegCM4, CLM was introduced as a new land surface scheme. The performance over China of RegCM4-CLM with different convection schemes is analyzed in this study, based on a series of short- term experiments.The model is driven by ERA-Interim data at a grid spacing of 25 km.The convection schemes employed are: Emanuel; Grell; Emanuel over land and Grell over ocean; Grell over land and Emanuel over ocean; and Tiedtke. The simulated mean surface air temperature and precipitation in December-February-January and June-July-August are compared against observation. In general, better performance of Emanuel is found both for temperature and precipitation, and in both seasons. Thus, the model physics of CLM and Emanuel for the land surface processes and convection, respectively, are recommended for further application of RegCM4 over the China region. The de^ciencies that remain in the model arealso outlined and discussed.