The line cartographic symbol located on the boundary and the point cartographic symbol located by single point are the main body and stress of the map. The cartographic symbols are divided into point, line and area sy...The line cartographic symbol located on the boundary and the point cartographic symbol located by single point are the main body and stress of the map. The cartographic symbols are divided into point, line and area symbol in cartography and traditional educational books, but up to now there is only qualitative description about the three kinds of symbols, there are not the mathematical definitions of point, line and area symbols. This paper tries to solve the problem. The authors propose the mathematical definition about point, line and area cartographic symbol according to the theory of topology and expound their dependence relation.展开更多
With the construction of spatial data infi'astructure, automated topographic map generalization becomes an indispensable component in the community of cartography and geographic information science. This paper descri...With the construction of spatial data infi'astructure, automated topographic map generalization becomes an indispensable component in the community of cartography and geographic information science. This paper describes a topographic map generalization system recently developed by the authors. The system has the following characteristics: 1) taking advantage of three levels of automation, i.e. fully automated generalization, batch generalization, and interactive generalization, to undertake two types of processes, i.e. intelligent inference process and repetitive operation process in generalization; 2) making use of two kinds of sources for generalizing rule library, i.e. written specifications and cartographers' experiences, to define a six-element structure to describe the rules; 3) employing a hierarchical structure for map databases, logically and physically; 4) employing a grid indexing technique and undo/redo operation to improve database retrieval and object generalization efficiency. Two examples of topographic map generalization are given to demonstrate the system. It reveals that the system works well. In fact, this system has been used for a number of projects and it has been found that a great improvement in efficiency compared with traditional map general- ization process can be achieved.展开更多
New adaptive preprocessing algorithms based on the polar coordinate system were put forward to get high-precision corneal topography calculation results. Adaptive locating algorithms of concentric circle center were c...New adaptive preprocessing algorithms based on the polar coordinate system were put forward to get high-precision corneal topography calculation results. Adaptive locating algorithms of concentric circle center were created to accurately capture the circle center of original Placido-based image, expand the image into matrix centered around the circle center, and convert the matrix into the polar coordinate system with the circle center as pole. Adaptive image smoothing treatment was followed and the characteristics of useful circles were extracted via horizontal edge detection, based on useful circles presenting approximate horizontal lines while noise signals presenting vertical lines or different angles. Effective combination of different operators of morphology were designed to remedy data loss caused by noise disturbances, get complete image about circle edge detection to satisfy the requests of precise calculation on follow-up parameters. The experimental data show that the algorithms meet the requirements of practical detection with characteristics of less data loss, higher data accuracy and easier availability.展开更多
文摘The line cartographic symbol located on the boundary and the point cartographic symbol located by single point are the main body and stress of the map. The cartographic symbols are divided into point, line and area symbol in cartography and traditional educational books, but up to now there is only qualitative description about the three kinds of symbols, there are not the mathematical definitions of point, line and area symbols. This paper tries to solve the problem. The authors propose the mathematical definition about point, line and area cartographic symbol according to the theory of topology and expound their dependence relation.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301037), and a PolyU Project(G-T873)
文摘With the construction of spatial data infi'astructure, automated topographic map generalization becomes an indispensable component in the community of cartography and geographic information science. This paper describes a topographic map generalization system recently developed by the authors. The system has the following characteristics: 1) taking advantage of three levels of automation, i.e. fully automated generalization, batch generalization, and interactive generalization, to undertake two types of processes, i.e. intelligent inference process and repetitive operation process in generalization; 2) making use of two kinds of sources for generalizing rule library, i.e. written specifications and cartographers' experiences, to define a six-element structure to describe the rules; 3) employing a hierarchical structure for map databases, logically and physically; 4) employing a grid indexing technique and undo/redo operation to improve database retrieval and object generalization efficiency. Two examples of topographic map generalization are given to demonstrate the system. It reveals that the system works well. In fact, this system has been used for a number of projects and it has been found that a great improvement in efficiency compared with traditional map general- ization process can be achieved.
基金Project(20120321028-01)supported by Scientific and Technological Key Project of Shanxi Province,ChinaProject(20113101)supported by Postgraduate Innovative Key Project of Shanxi Province,China
文摘New adaptive preprocessing algorithms based on the polar coordinate system were put forward to get high-precision corneal topography calculation results. Adaptive locating algorithms of concentric circle center were created to accurately capture the circle center of original Placido-based image, expand the image into matrix centered around the circle center, and convert the matrix into the polar coordinate system with the circle center as pole. Adaptive image smoothing treatment was followed and the characteristics of useful circles were extracted via horizontal edge detection, based on useful circles presenting approximate horizontal lines while noise signals presenting vertical lines or different angles. Effective combination of different operators of morphology were designed to remedy data loss caused by noise disturbances, get complete image about circle edge detection to satisfy the requests of precise calculation on follow-up parameters. The experimental data show that the algorithms meet the requirements of practical detection with characteristics of less data loss, higher data accuracy and easier availability.